
© 2004 Hewlett-Packard Development Company, L.P.
The information contained herein is subject to change without notice

Porting OpenVMS to
the Itanium™
Processor Family

Andy Goldstein (acknowledgements to

OpenVMS Engineering Clair Grant)

October, 2004

2

“We will port OpenVMS to the IA64
architecture and ship a production quality
release in 2004.”

June 25th, 2001
Hewlett-Packard

3

Platform transition period

03 0402 05

Itanium®-based
HP server

HP AlphaServer EV68 EV7 EV79

Madison Itanium®-based
system upgrades

Itanium®-based
system upgrades

Sell at least until
2006; support at least

until 2011

Version Version Version
7.3 7.3-1 7.3-2

HP
OpenVMS

Alpha

Boot Jan ‘03
OpenVMS I64 E8.0 H103

Eval. Release
OpenVMS I64 E8.1 H203

Eval. Release

Future releases
providing continued

enhancement &
support

HP OpenVMS
Industry

Standard 64

Itanium® 2
processor

hp OpenVMS Roadmap

hp OpenVMS I64 V8.2 (2004)
(3rd Release Production Quality)
& hp OpenVMS Alpha V8.2

4

hp OpenVMS Industry Standard 64 (I64)
Release Roadmap

H103H103 H104 H104 H204H204H203H203

First Ship

1st Boot on i2000 system, January 31, 2003 3:31 PM EST
Boot on rx2600 system (First Ship platform), March 17, 2003

H103: hp OpenVMS I64 E8.0 “Mako” Evaluation Release
Audience: Selected ISVs and Partners
OpenVMS Itanium Operating System, Monitor Utility
Networks: DECnet Phase IV, TCP/IP
Development Tools: Cross Linker, Cross Librarian, Native Debugger
Cross Compilers: C, C++, BLISS, FORTRAN, IMACRO

H203: hp OpenVMS I64 E8.1 “Jaws” Evaluation Release
Audience: Key ISVs, Partners, Early Adopters
Limited cluster functionality (4 nodes)

Native Compilers: C, C++, BLISS, FORTRAN, IMACRO,
Pascal, BASIC, COBOL

Additional Language Support: JAVA
Additional Layered Products…Networks, Data Serving,
Security, eBusiness Integration, Application Development

Internal releases

External releases HP OpenVMS I64 V8.2Production
Quality

5

Porting Goals

• Provide an operating system environment,
development tools, and documentation to make
porting as easy as possible
−Full port of the Operating System, Runtime

Libraries, development tools and most layered
products

−Recompile, relink, requalify
• Use our experiences porting the operating system
to make it easier for others to port their
applications
−Internal layered product groups, partners, and

customers

6

Porting Philosophy

• This is not a “bug for bug compatible” coding exercise. We
are doing much, much more.

• First, we are not just porting to the Itanium® architecture; we
are making OpenVMS more portable.

• Second, we are improving code maintainability (and
sometimes performance) by replacing VAX assembler code
when appropriate.

• Third, we are making the system more open to the possibility
of exchanging code with other systems, especially analysis
tools. (This even helped us with some early debug.)

7

Big Challenges for the Base OS

• No Alpha Console
− Booting
−Device Discovery
− Interrupts
− TLB miss handler

• No Alpha PALcode
− VAX Queue Instructions
− VAX Registers
− IPL and mode change

• Different primitives in CPU
− Register Conventions
− Exception Handling
−Atomic Instructions
− Process Context

• Plus, we decided to change
− calling standard
− object language
− image format

8

It’s All in the Software

OpenVMS

Console

Application

Itanium®

Processor

OpenVMS

Console

Application

VAX

OpenVMS

Application

Alpha

Console
PALcode

FW

HW

SW

9

Console

• Intel-architected boot environment
− In the FAT partition

• VMS_LOADER.EFI

• IPB.EXE

−Operating system interface to ACPI data
• Boot drivers for SCSI and IDE
• VMS uses standard PAL/SAL console interfaces to

get
−Translation buffer info
−Clock frequency
−Machine Check Vectors
−….

10

Alpha PALcode Replacement

• The following are all managed in the PAL on Alpha;
VMS does the work on Itanium
−VAX queue instructions (compilers generate OS calls)
−VAX internal processor registers
−AST and software interrupt support
− IPL
−Swap context

11

CPU Primitives

• Different register conventions
−R8/return status; R12/stack pointer
−Compilers do the translation

• More registers
• IMACRO automatically replaces LDL/STC sequences
• Memory fence replaces memory barrier
• Compilers have builtins for most functions

12

Calling Standard

• Intel Calling Standard plus VMS extensions
−Different register conventions
−Unwind data

• Affected areas
−Exception handling
−Signaling
−Compilers
− LINKER
−Debuggers
−Non-standard routine calls
−Swap context
−Kernel Processes enhanced to provide “context-aware” routines

for all modes – converted DCL, DECnet, XQP, RMS,……

13

Lines of Code Perspective

RecompileNew

OpenVMS on Itanium®-based systems

Porting effort is very focused on a few areas of the system.

14

How did it go?

• ‘Boot Contest’ on i2000
−Scheduled: 12 weeks to boot (given “good” linked

images)
−Actual: 10 weeks (Jan. 31, 2003)

• Boot on rx2600
−Scheduled: 6 weeks
−Actual: 6 weeks and 1 day (Mar. 17, 2003)

• The effort and difficulty have been about as expected
−No huge surprises
−New Calling Standard and Object Language at least 50%

of the project

15

Current Itanium Porting Status

• We're Done! (modulo a couple of bugs)
• Still Using Cross Tools to Build
−C, C++, Bliss, iMacro, IA64 Assembler cross compilers
−Cross Linker
−Cross SDA allows for IA64 dumps analysis on Alpha

• Booted on
−All supported systems
−Several that aren't supported yet

16

Current Itanium Porting status

• What is not yet working (October 6)

−Edit/Teco
−Delta Debugger not in V8.2
−System Code Debugger (SCD)
− INSTALL performance features
−Security Server
−Registry Server
−ACME Server
−Shadowing
−Fibre Channel Boot
−Cluster Satellite Booting not in V8.2

© 2004 Hewlett-Packard Development Company, L.P.
The information contained herein is subject to change without notice

OpenVMS Alpha and IPF
Performance Comparison

Andy Goldstein (acknowledgements to
OpenVMS Engineering Greg Jordan)
Hewlett-Packard

18

Overview
• The purpose of this presentation is to provide you

with appropriate expectations of the performance
of OpenVMS on Integrity platforms.

• The performance of various Integrity platforms will
be compared with a variety of current Alpha
platforms.

19

IPF/Alpha Performance Comparison

• The Basics
− CPU
− Memory
− IO

• OpenVMS Operating System Performance

• Various Improvement Successes

• Performance Conclusions

20

CPU – Integer test program

0

100

200

300

400

500

600

R
at

in
g

rx4640
1.3GHz/3mb

rx2600
1.5GHz/6MB

ES45 1GHz

GS1280
1.15GHz

More is better

Integer test program

21

SETI

0

5000

10000

15000

20000

25000

C
PU

 S
ec

on
ds

Time to Process a Work Unit

rx2600
1.5GHz
rx2600
1.3GHz
rx2600
900MHz
DS25
1GHz
XP 1000
666MHz

Less is better

22

Memory Bandwidth
• MEMSpeed – Test Program

More is better

0

500

1000

1500

2000

2500

M
B

/s
ec

rx4640 (mx2)
1.1GHz/4MB
rx4640
1.3GHz/3MB
rx2600
1.5GHz/6MB
rx4640
1.5GHz/6MB
ES45 1GHz

GS1280
1.15GHz

23

0

50

100

150

200

250

La
te

nc
y

(n
s)

rx4640
1.3GHz/3MB
rx2600
1.5GHz/6MB
rx4640
1.5GHz/6MB
ES45 1GHz

GS1280
1.15GHz

Memory Latency

Less is better

24

IO Performance – single process
(QLogic ISP23xx) 2Gigabit Fiber Channel Card

0

5,000

10,000

15,000

20,000

25,000

1
Bl

oc
k

4
Bl

oc
k

8
Bl

oc
k

16
 B

lo
ck

32
 B

lo
ck

64
 B

lo
ck

96
 B

lo
ck

12
7 B

lo
ck

O
ps

/S
ec ES45

1GHz

rx4640
1.5GHz

More is better

25

IO Performance – two processes
(QLogic ISP23xx) 2Gigabit Fiber Channel Card

0

10,000

20,000

30,000

40,000

50,000

1
Bl

oc
k

4
Bl

oc
k

8
Bl

oc
k

16
 B

lo
ck

32
 B

lo
ck

64
 B

lo
ck

96
 B

lo
ck

12
7 B

lo
ck

O
ps

/S
ec ES45

1GHz

rx4640
1.5GHz

More is better

26

Gigabit Transmit MBytes/Sec
rx4640 1.3GHZ (A6825A - Broadcom 5701) in 64-bit PCI @ 66 mhz
DS25 1GHz (DEGXA - Broadcom 5703) in 64-bit PCI @ 66 mhz

0

20

40

60

80

100

120

140
64 19
2

51
2

10
24

15
18

90
18

M
B

/s
ec

DS25
1GHz

rx4640
1.5GHz

More is better

27

0%

20%

40%

60%

80%

100%
64 19

2

51
2

10
24

15
18

90
18

C
PU

 U
til

iz
at

io
n

DS25
1GHz

rx4640
1.5GHz

Gigabit Transmit CPU Utilization
rx4640 1.3GHZ (A6825A - Broadcom 5701) in 64-bit PCI @ 66 mhz
DS25 1GHz (DEGXA - Broadcom 5703) in 64-bit PCI @ 66 mhz

Less is better

28

Gigabit Transmit/Receive MBytes/Sec
rx4640 1.3GHZ (A6825A - Broadcom 5701) in 64-bit PCI @ 66

mhz
DS25 1GHz (DEGXA - Broadcom 5703) in 64-bit PCI @ 66 mhz

0

50

100

150

200

250
64 19

2

51
2

10
24

15
18

90
18

M
B

/s
ec

DS25
1GHz

rx4640
1.5GHz

More is better

1 CPU Active

29

Gigabit Transmit/Receive CPU Utilization
rx4640 1.3GHZ (A6825A - Broadcom 5701) in 64-bit PCI @ 66 mhz
DS25 1GHz (DEGXA - Broadcom 5703) in 64-bit PCI @ 66 mhz

Less is better

0%

20%

40%

60%

80%

100%

64 19
2

51
2

10
24

15
18

90
18

C
PU

 U
til

iz
at

io
n

DS25
1G Hz

rx4640
1.5G Hz

30

System Services – X8.2 vs. 7.3-2

-

0.50

1.00

1.50

2.00

2.50

3.00

3.50

1 5 9 13 17 21 25 29 33 37 41 45 49 53 57 61 65 69 73 77 81 85 89 93 97 101 105 109

OpenVMS Goal:
Continue to move

more and more
test points above

the line and to
push the points
above the line

higher & higher

RX4640 faster than
ES45 for all points

above the line

31

Lock Manager Stress Test

More is better

0
100
200
300
400

500
600
700

1 2 3 4
Active CPUs

C
on

ve
rt

s/
se

c
(1

00
0s

) rx4640
1.1GHz 0-3

rx4640
1.3GHz
rx4600
1.5GHz
ES45 1GHz

GS1280
1.15GHz

4 Processes

32

XFC Cached 1 Block IOs

More is better

0
20,000
40,000
60,000
80,000

100,000
120,000
140,000
160,000
180,000

1 2 3 4

Processes

C
ac

he
d

IO
s/

se
c

rx4640
1.5GHz

GS1280
1.15GHz

ES40
833MHz

33

XFC Cached 4 Block IOs

More is better

0
20,000
40,000
60,000
80,000

100,000
120,000
140,000
160,000
180,000

1 2 3 4

Processes

C
ac

he
d

IO
s/

se
c

rx4640
1.5GHz

GS1280
1.15GHz

ES40
833MHz

34

XFC Cached 16 Block IOs

More is better

0
20,000
40,000
60,000
80,000

100,000
120,000
140,000
160,000
180,000

1 2 3 4

Processes

C
ac

he
d

IO
s/

se
c

rx4640
1.5GHz

GS1280
1.15GHz

ES40
833MHz

35

RMS1 (RAMdisk)

0

10000

20000

30000

40000

50000

60000

IO
s/

Se
c

1 2 3 4
Processes

ES45
1GHz

rx4640
1.5GHz

More is better

36

rx4640 vs. rx4640-8 (mx2 module)

0

10000

20000

30000

40000

50000

60000

IO
s/

Se
c

4 Processes 8 Processes

Processes

rx4640
1.5GHz

rx4640
1.3GHz

rx4640
1.1GHz
(mx2)

More is better

37

OpenVMS InfoServer CPU Usage

0%

20%

40%

60%

80%
1 2 3 4 5 6 7 8 9 10

Active Client Loads

C
PU

 U
til

iz
at

io
n

rx2600
900M Hz
(April)
rx2600
900M Hz
(June)
rx2600
1.5GHz
(Estimate)
ES45
1GHz

Less is better

(Advanced Development Project)

Backup/Image from InfoServer to local device

38

Apache Requests Per Second

0
5

10
15
20
25
30
35
40
45
50

Con
cu

rre
nc

y 1

Con
cu

rre
nc

y 2

Con
cu

rre
nc

y 4

Con
cu

rre
nc

y 8

R
eq

ue
st

s/
Se

c

ES45
1GHz

rx4640
1.5
GHz

More is better

Simple CGI Script

39

Apache – CPU Utilization

0

50

100

150

200

250

300

350

400

Con
cu

rre
nc

y 1

Con
cu

rre
nc

y 2

Con
cu

rre
nc

y 4

Con
cu

rre
nc

y 8

C
PU

 U
til

iz
at

io
n

ES45
1GHz

rx4640
1.5 GHz

Less is better

Simple CGI Script

40

Various Improvement Successes
• Heavy IO loads to disks performed very poorly

• rx2600 2,084 IOs/sec

• Spinlock Analysis showed VERY heavy usage of
MMG for the IPF which didn’t appear for the
Alpha

• Further Analysis showed IPF was never caching
any KPB structures.

• One line fix ->
• rx2600 10,999 IOs/sec

41

OTS$MOVE and OTS$MOVEM
• OTS$MOVE and OTS$MOVEM are low level

routines called by compilers to move data.
− Macro calls this for MOVC3 and MOVC5 instructions
− C calls this routine for memcpy
− BLISS call this for ch$move

• Highly optimized versions of these routines have
recently been integrated into OpenVMS

• This resulted in significant performance
improvements for tests that did heavy memory
copies
− The RMS1 test improved by about 15% for single stream

and by about 38% for 4 streams!

42

Queue Instructions
• The various VAX architecture queue instructions

were initially implemented as system services
− These needed to be done in Kernel mode to insure the operation was

atomic
− We knew they would be slow and they were as shown by a small test

program doing insque/remque in loop.

ES45: 0:05.21 rx2600: 2:58.21 (34 times slower)

• The implementation of the queue instructions has been
changed to no longer use the system service dispatcher

• They now use the EPC (Enter Privileged Code)

rx2600: 0:14.59 (< 3 times slower)

43

Areas that are Slower on IPF
• There are several areas where the equivalent

operations on IPF systems are slower
−Queue Instructions
−Various PAL calls which now go through the system

service dispatcher
−Exception Handling

• Exceptions Frames much larger
• Finding Exception Handlers takes longer

• Images also are typically 3 times as large
−This can impact image activation time
−Requires More IO
− Increase page faults

44

200520032001 2007 2009

EV7

EV7z

OpenVMS on

Projected Performance Crossover
Point predicted two years ago

45

Conclusions
• 1.5GHz rx4640 Integrity systems perform similarly

to 1GHz ES45 Alpha systems
• There will continue to be improvements in both the

OS and Compilers prior to the release of
OpenVMS V8.2

• OS improvements coupled with future hardware
speed ups will allow OpenVMS on IPF to out
perform OpenVMS on Alpha

46

