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“We will port OpenVMS to the IA64 
architecture and ship a production quality 
release in 2004.”

June 25th, 2001
Hewlett-Packard
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Platform transition period

03 0402 05

Itanium®-based 
HP server

HP AlphaServer EV68 EV7 EV79

Madison Itanium®-based 
system upgrades 

Itanium®-based 
system upgrades 

Sell at least until 
2006; support at least 

until 2011 

Version      Version      Version
7.3           7.3-1           7.3-2

HP 
OpenVMS

Alpha

Boot Jan ‘03
OpenVMS I64 E8.0 H103

Eval. Release
OpenVMS I64 E8.1 H203              

Eval. Release

Future releases 
providing continued 

enhancement & 
support 

HP OpenVMS
Industry 

Standard 64

Itanium® 2 
processor

hp OpenVMS Roadmap

hp OpenVMS I64 V8.2 (2004)
(3rd Release Production Quality)
& hp OpenVMS Alpha V8.2
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hp OpenVMS Industry Standard 64 (I64) 
Release Roadmap

H103H103 H104                      H104                      H204H204H203H203

First Ship

1st Boot on i2000 system, January 31, 2003 3:31 PM EST
Boot on rx2600 system (First Ship platform), March 17, 2003

H103: hp OpenVMS I64 E8.0 “Mako” Evaluation Release
Audience: Selected ISVs and Partners
OpenVMS Itanium Operating System, Monitor Utility
Networks: DECnet Phase IV, TCP/IP 
Development Tools: Cross Linker, Cross Librarian, Native Debugger
Cross Compilers: C, C++, BLISS, FORTRAN, IMACRO

H203: hp OpenVMS I64 E8.1 “Jaws” Evaluation Release
Audience: Key ISVs, Partners, Early Adopters
Limited cluster functionality (4 nodes)

Native Compilers: C, C++, BLISS, FORTRAN, IMACRO, 
Pascal, BASIC, COBOL

Additional Language Support: JAVA
Additional Layered Products…Networks, Data Serving, 
Security, eBusiness Integration, Application Development

Internal releases

External releases HP OpenVMS I64 V8.2Production 
Quality
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Porting Goals

• Provide an operating system environment, 
development tools, and documentation to make 
porting as easy as possible
−Full port of the Operating System, Runtime 

Libraries, development tools and most layered 
products

−Recompile, relink, requalify
• Use our experiences porting the operating system 
to make it easier for others to port their 
applications
−Internal layered product groups, partners, and 

customers
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Porting Philosophy

• This is not a “bug for bug compatible” coding exercise. We 
are doing much, much more.

• First, we are not just porting to the Itanium® architecture; we 
are making OpenVMS more portable.

• Second, we are improving code maintainability (and 
sometimes performance) by replacing VAX assembler code 
when appropriate.

• Third, we are making the system more open to the possibility 
of exchanging code with other systems, especially analysis 
tools. (This even helped us with some early debug.)
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Big Challenges for the Base OS

• No Alpha Console
− Booting
−Device Discovery
− Interrupts
− TLB miss handler

• No Alpha PALcode
− VAX Queue Instructions
− VAX Registers
− IPL and mode change

• Different primitives in CPU
− Register Conventions
− Exception Handling
−Atomic Instructions
− Process Context

• Plus, we decided to change
− calling standard
− object language
− image format
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It’s All in the Software

OpenVMS

Console

Application

Itanium®

Processor

OpenVMS

Console

Application

VAX

OpenVMS

Application

Alpha

Console
PALcode

FW

HW

SW
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Console

• Intel-architected boot environment
− In the FAT partition

• VMS_LOADER.EFI

• IPB.EXE

−Operating system interface to ACPI data
• Boot drivers for SCSI and IDE
• VMS uses standard PAL/SAL console interfaces to 

get
−Translation buffer info
−Clock frequency
−Machine Check Vectors
−…. 
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Alpha PALcode Replacement

• The following are all managed in the PAL on Alpha; 
VMS does the work on Itanium
−VAX queue instructions (compilers generate OS calls)
−VAX internal processor registers
−AST and software interrupt support
− IPL
−Swap context
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CPU Primitives

• Different register conventions
−R8/return status; R12/stack pointer
−Compilers do the translation 

• More registers
• IMACRO automatically replaces LDL/STC sequences
• Memory fence replaces memory barrier
• Compilers have builtins for most functions
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Calling Standard

• Intel Calling Standard plus VMS extensions
−Different register conventions
−Unwind data

• Affected areas
−Exception handling
−Signaling
−Compilers
− LINKER
−Debuggers
−Non-standard routine calls
−Swap context
−Kernel Processes enhanced to provide “context-aware” routines 

for all modes – converted DCL, DECnet, XQP, RMS,……
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Lines of Code Perspective

RecompileNew

OpenVMS on Itanium®-based systems

Porting effort is very focused on a few areas of the system.
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How did it go?

• ‘Boot Contest’ on i2000
−Scheduled: 12 weeks to boot (given “good” linked 

images)
−Actual: 10 weeks (Jan. 31, 2003)

• Boot on rx2600
−Scheduled: 6 weeks
−Actual: 6 weeks and 1 day (Mar. 17, 2003)

• The effort and difficulty have been about as expected
−No huge surprises
−New Calling Standard and Object Language at least 50% 

of the project
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Current Itanium Porting Status

• We're Done! (modulo a couple of bugs)
• Still Using Cross Tools to Build
−C, C++, Bliss, iMacro, IA64 Assembler cross compilers
−Cross Linker
−Cross SDA allows for IA64 dumps analysis on Alpha

• Booted on
−All supported systems
−Several that aren't supported yet
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Current Itanium Porting status

• What is not yet working (October 6)

−Edit/Teco
−Delta Debugger         not in V8.2
−System Code Debugger (SCD)
− INSTALL performance features
−Security Server
−Registry Server
−ACME Server
−Shadowing
−Fibre Channel Boot
−Cluster Satellite Booting           not in V8.2
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Overview
• The purpose of this presentation is to provide you 

with appropriate expectations of the performance 
of OpenVMS on Integrity platforms.

• The performance of various Integrity platforms will 
be compared with a variety of current  Alpha 
platforms.
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IPF/Alpha Performance Comparison

• The Basics
− CPU 
− Memory
− IO

• OpenVMS Operating System Performance

• Various Improvement Successes

• Performance Conclusions
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CPU – Integer test program
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SETI 
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Memory Bandwidth
• MEMSpeed – Test Program

More is better
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IO Performance – single process
(QLogic ISP23xx) 2Gigabit Fiber Channel Card 
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IO Performance – two processes
(QLogic ISP23xx) 2Gigabit Fiber Channel Card 
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Gigabit Transmit MBytes/Sec
rx4640 1.3GHZ  (A6825A - Broadcom 5701) in 64-bit PCI @ 66 mhz
DS25 1GHz       (DEGXA - Broadcom 5703) in 64-bit PCI @ 66 mhz
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Gigabit Transmit/Receive MBytes/Sec
rx4640 1.3GHZ  (A6825A - Broadcom 5701) in 64-bit PCI @ 66 

mhz
DS25 1GHz       (DEGXA - Broadcom 5703) in 64-bit PCI @ 66 mhz
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Gigabit Transmit/Receive CPU Utilization
rx4640 1.3GHZ  (A6825A - Broadcom 5701) in 64-bit PCI @ 66 mhz
DS25 1GHz       (DEGXA - Broadcom 5703) in 64-bit PCI @ 66 mhz

Less is better
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System Services – X8.2  vs. 7.3-2 
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Lock Manager Stress Test

More is better
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XFC Cached 1 Block IOs

More is better
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XFC Cached 4 Block IOs

More is better
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XFC Cached 16 Block IOs

More is better
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RMS1 (RAMdisk)
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rx4640 vs. rx4640-8 (mx2 module)
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OpenVMS InfoServer CPU Usage
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Apache Requests Per Second
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Apache – CPU Utilization
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Various Improvement Successes
• Heavy IO loads to disks performed very poorly

• rx2600 2,084 IOs/sec

• Spinlock Analysis showed VERY heavy usage of 
MMG for the IPF which didn’t appear for the 
Alpha

• Further Analysis showed IPF was never caching 
any KPB structures.

• One line fix ->
• rx2600 10,999 IOs/sec
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OTS$MOVE and OTS$MOVEM
• OTS$MOVE and OTS$MOVEM are low level 

routines called by compilers to move data.
− Macro calls this for MOVC3 and MOVC5 instructions
− C calls this routine for memcpy
− BLISS call this for ch$move

• Highly optimized versions of these routines have 
recently been integrated into OpenVMS

• This resulted in significant performance 
improvements for tests that did heavy memory 
copies
− The RMS1 test improved by about 15% for single stream 

and by about 38% for 4 streams!
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Queue Instructions
• The various VAX architecture queue instructions 

were initially implemented as system services
− These needed to be done in Kernel mode to insure the operation was 

atomic
− We knew they would be slow and they were as shown by a small test 

program doing insque/remque in loop.

ES45:    0:05.21 rx2600:   2:58.21      (34 times slower)

• The implementation of the queue instructions has been 
changed to no longer use the system service dispatcher

• They now use the EPC (Enter Privileged Code)

rx2600:  0:14.59  (< 3 times slower)
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Areas that are Slower on IPF
• There are several areas where the equivalent 

operations on IPF systems are slower
−Queue Instructions
−Various PAL calls which now go through the system 

service dispatcher
−Exception Handling

• Exceptions Frames much larger
• Finding Exception Handlers takes longer

• Images also are typically 3 times as large
−This can impact image activation time
−Requires More IO
− Increase page faults
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Conclusions
• 1.5GHz rx4640 Integrity systems perform similarly 

to 1GHz ES45 Alpha systems 
• There will continue to be improvements in both the 

OS and Compilers prior to the release of 
OpenVMS V8.2

• OS improvements coupled with future hardware 
speed ups will allow OpenVMS on IPF to out 
perform OpenVMS on Alpha
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