nnnnnn

Porting OpenVMS to
the Itanium™
Processor Family

Andy Goldstein (acknowledgements to
OpenVMS Engineering Clair Grant)

October, 2004

© 2004 Hewlett-Packard Development Company, L.P.
The information contained herein is subject to change without notice

“We will port OpenVMS to the 1A64
architecture and ship a production quality

release in 2004."

June 251 2001
Hewlett-Packard

nnnnnn

hp OpenVMS Roadmap

02 03 04 05

Alpha

HP OpenVMS Futur’,e releases
Industry providing continued

Standard 64 enhancement &

support

.« Platform transition period ——»

H103

O

invent

H203 H104 H204

15t Boot on i2000 system, January 31, 2003 3:31 PM EST
Boot on rx2600 system (First Ship platform), March 17, 2003

First Ship

Internal releases

External releases

H103: hp OpenVMS 164 E8.0 “Mako” Evaluation Release
Audience: Selected ISVs and Partners
OpenVMS Itanium Operating System, Monitor Utility

Networks: DECnet Phase IV, TCP/IP
Development Tools: Cross Linker, Cross Librarian, Native Debugger
Cross Compilers: C, C++, BLISS, FORTRAN, IMACRO

H203: hp OpenVMS 164 E8.1 “Jaws” Evaluation Release
Audience: Key ISVs, Partners, Early Adopters
Limited cluster functionality (4 nodes)

Native Compilers: C, C++, BLISS, FORTRAN, IMACRO,
Pascal, BASIC, COBOL

Additional Language Support: JAVA

Additional Layered Products...Networks, Data Serving,
Security, eBusiness Integration, Application Development

Production HP OpenVMS 164 V8.2

Quality

IPor’ring Goals (A

Provide an operating system environment,
development tools, and documentation to make
porting as easy as possible

“ull port of the Operating System, Runtime
Libraries, development tools and most layered
oroducts

Recompile, relink, requality
Use our experiences porting the operating system

to make it easier for others to port their
applications

Internal layered product groups, partners, and
customers

nnnnnn

IPor’ring Philosophy Q) |

This is not a “bug for bug compatible” coding exercise. We
are doing much, much more.

First, we are not just porting to the ltanium® architecture; we
are making OpenVMS more portable.

Second, we are improving code maintainability (and
sometimes performance) by replacing VAX assembler code
when appropriate.

Third, we are making the system more open to the possibility
of exchanging code with other systems, especially analysis
tools. (This even helped us with some early debug.)

Big Challenges tor the Base OS O]

No Alpha Console

Booting
Device Discovery
Interrupts

TLB miss handler

No Alpha PALcode
VAX Quevue Instructions
VAX Registers

IPL and mode change

nnnnnn

Ditferent primitives in CPU
Register Conventions
Exception Handling
Atomic Instructions
Process Context

Plus, we decided to change
calling standard
object language
image format

Application Application Application

PALcode

ltanium®
Processor

IConsole

Intel-architected boot environment

In the FAT partition
VMS_LOADER.EFI

IPB.EXE

Operating system interface to ACPI data
Boot drivers tor SCSI and IDE

VMS uses standard PAL/SAL console interfaces to
get
Translation buffer info

Clock frequency
Machine Check Vectors

nnnnnn

IAlpho PAlLcode Replacement Q]

nnnnnn

The following are all managed in the PAL on Alpha;
VMS does the work on ltanium
VAX queue instructions (compilers generate OS calls)
VAX internal processor registers
AST and software interrupt support
IPL

Swap context

10

|cpu Primitives O]

Ditferent register conventions
R8/return status; R12/stack pointer
Compilers do the translation

More registers

IMACRO automatically replaces LDL/STC sequences
Memory fence replaces memory barrier

Compilers have builtins for most functions

11

nnnnnn

ICclling Standard Q) |

Intel Calling Standard plus VMS extensions

Different register conventions
Unwind data

Aftected areas
Exception handling
Signaling
Compilers
LINKER
Debuggers
Non-standard routine calls
Swap context

Kernel Processes enhanced to provide “context-aware” routines
for all modes — converted DCL, DECnet, XQP, RMS,

12

Lines of Code Perspective

New

Recompile

nnnnnn

'
OpenVMS on Itanium®-based systems

Porting effort is very focused on a few areas of the system.

13

nnnnnn

IHow did it go? O

‘Boot Contest’ on i2000

Scheduled: 12 weeks to boot (given “good” linked
images)

Actual: 10 weeks (Jan. 31, 2003)

Boot on rx2600
Scheduled: 6 weeks
Actual: 6 weeks and T day (Mar. 17, 2003)

The effort and ditticulty have been about as expected
No huge surprises

New Calling Standard and Object Language at least 50%
of the project

14

nnnnnn

ICurren’r ltanium Porting Status A

We're Done! (modulo a couple ot bugs)
Still Using Cross Tools to Build

C, C++, Bliss, iMacro, 1A64 Assembler cross compilers

Cross Linker

Cross SDA allows for IA64 dumps analysis on Alpha
Booted on

All supported systems

Several that aren't supported yet

15

ICurren’r ltanium Porting status

What is not yet working (October 6)

Fi nnel Boot
uster otellifeTSBo’rlnD_ not in V8.2

nnnnnn

16

nnnnnn

OpenVMS Alpha and IPF

Performance Comparison

Andy Goldstein (acknowledgements to

OpenVMS Engineering Greg Jordan)
Hewlett-Packard

© 2004 Hewlett-Packard Development Company, L.P.
The information contained herein is subject to change without notice

I Overview o

The purpose of this presentation is to provide you
with appropriate expectations of the performance
ot OpenVMS on Integrity platforms.

The pertformance of various Integrity platforms will
be compared with a variety of current Alpha
plattforms.

I IPF/Alpha Pertormance Comparison

The Basics

CPU
Memory
1O

OpenVMS Operating System Performance

Various Improvement Successes

Performance Conclusions

nnnnnn

CPU - Integer test program

Rating

Integer test program

600 -

500+
400-
300+
200+

100+

O_

More IS better

iiii

B rx4640
1.3GHz/3mb

B rx2600
1.5GHz/6MB

B ES45 1GHz

B GS1280
1.15GHz

n

20

ISETI

Time to Process a Work Unit

B rx2600

25000+ 1.5GHz

B rx2600

g 20000- 1.3GHz
S 15000- M rx2600

@ 900MHz
2 10000- B DS25
83 5000- 1GHz

@ XP 1000

0- 666MHz

Less IS better

‘‘‘‘‘

21

Memory Bandwidth

MEMSpeed - Test Program

iiii

2500 -

2000

1500

MB/sec

1000

500-

O_

More Is better

M rx4640 (mx2)
1.1GHz/4AMB

W rx4640
1.3GHz/3MB

H rx2600
1.5GHz/6MB

B rx4640
1.5GHz/6MB

O ES45 1GHz

B GS1280
1.15GHz

n t

22

nnnnnn

Memory Latency

250- B rx4640
1.3GHz/3MB
200 B rx2600
V)
2 1.5GHz/6MB
L>)~ B rx4640
5 100- 1.5GHz/6MB
E B ES45 1GHz
50-
0 GS1280
0- 1.15GHz

Less iIs better

23

|O Pertformance - single process)
(QLogic 1SP23xx) 2Gigabit Fiber Channel Card e
25,000

20,000 ///; '\\
15,000 Y ESAS

(@)
(D)
% // 1GHz
G 10,000 1~ = rx4640
1.5GHz
5,000 ~—

0

F ¥ F ¥ ¥ ¥ xr
¥ @Y v 0 QO %
AT AR S

©

\oe}'
Q
- Y
More is better .

|O Pertformance — two processes)
(QLogic I1SP23xx) 2Gigabit Fiber Channel Card """
50,000

\ \. 1GHz
20,000 = x4640
\\k 1.5GHz
10,000

Ops/Sec

More is better .

Gigabit Transmit MBytes/Sec)

rx4640 1.3GHZ (A6825A - Broadcom 5701) in 64-bit PCIl @ 66 mhz 7.7,
DS25 1GHz (DEGXA - Broadcom 5703) in 64-bit PCl @ 66 mhz

140

100
o / ——DS25
= 60 = rx4640

40 // 1.5GHz

of
20
0 .

More IS better

26

Gigabit Transmit CPU Utilization 'O
rx4640 1.3GHZ (A6825A - Broadcom 5701) in 64-bit PCl @ 66 mhz A
DS25 1GHz (DEGXA - Broadcom 5703) in 64-bit PCl @ 66 mhz

llllll

100% DS \
80% -\
c
= \\\ —DS25
T 0
D o0% 1GHz
5 40% = rx4640
E 1.5GHz
© 20%
0
‘\\:
0%
S -

Less IS better

27

Gigabit [ransmit/kecelve Mbytes/
rx4640 1.3GHZ (A6825A - Broadcom 5701) in 64-bit PCI @ 66

mhz

MB/sec

DS25 1GHz

250

200

150

100

50

1 CPU Active

e

/

SdecC

nnnnn

(DEGXA - Broadcom 5703) in 64-bit PCl @ 66 mhz

t

——DS25
1GHz

- 1X4640
1.5GHz

More is better

28

CPU Utilization

igabit Transmit/Receive CPU Utilization

rx4640 1.3GHZ (A6825A - Broadcom 5701) in 64- bit PCl @ 66 mhz

iiii

—-—DS25
1GHz

- 1X4640
1.5GHz

DS25 1GHz (DEGXA - Broadcom 5703) in 64-bit PCl @ 66 mhz
100% —4.;0\\
80%
\\
20%
N
O% " v v s ® @
© 3 A

Less IS better

n t

29

System Services — X8.2 vs. /.3-2

3.50 ~

3.00 A

2.50

2.00

1.50

1.00

0.50

nnnnn

t

RX4640 faster than ,»

..ES45 for all points OpenVMS Goal:

Continue to move

adilDe\.C

more and more
test points above |

the line and to
push thg points

above fhe line
igher & higher

1 5 9 13 17 21 25 29 33 37 41 45 49 53 57 61 65 69 73 77 81 85 89 93 97 101 105 109

30

Lock Manager Stress Test

4 Processes

700

Converts/sec (1000s)

-8 88888

nnnnn

t

A

PN
=S

o

Z

Active CPUs
More is better

-+ ESA5 1GHz

—+ GS1280
115Gz

31

I XFC Cached 1 Block IOs

Cached I0s/sec

180,000
160,000
140,000
120,000
100,000
80,000
60,000
40,000
20,000
0

nnnnnn

A

T~

0//
.‘\AVK‘

1 2 3 4

Processes
More IS better

32

nnnnnn

I XFC Cached 4 Block I0s O

180,000

——1x4640
160,000 1 5GHy
o 140,000 _
& — - GS1280
2 120,000
? — 1.15GHz
© 100,000 —
T 80,000 I Feme—— - ES40
;;% 60,000 833MHz
O 40,000
20,000
0 I I I
1 2 3 4
Processes

More Is better

33

XFC Cached 16 Block IOs

180,000
160,000
140,000
120,000
100,000
80,000
60,000
40,000
20,000

Cached I0s/sec

nnnnnn

/.*

A
T

————

——x4640
1.5GHz

= (551280
1.15GHz

- ES40
833MHz

I

2

3

Processes

More IS better

34

I RMST (RAMdisk)

|Os/Sec

60000 -
50000 -
40000 1
30000 -
20000 -
10000 1

0-

1 2 3 4

Processes
More Is better

nnnnn

t

B ES45
1GHz

E rx4640

1.5GHz

35

|Os/Sec

60000 -
50000 -
40000 1
30000 -
20000 -
10000 -

anananan

O_

4 Processes

Processes
More IS better

B rx4640
1.5GHz

[rx4640
1.3GHz

E rx4640
1.1GHz
(Mx2)

8 Processes

36

OpenVMS IntoServer CPU Usage pere

(Advanced Development Project)

80%

——rx2600
900MHz

(April)
0
60% ——-rx2600

900MHz
(June)

40% —A4—rx2600
1.5GHz
(Estimate)

20% - ES45

— 1GHz

CPuU Utilization

0%

Active Client Loads

Backup/Image from InfoServer to local device

|_ess IS better 37

Apache Requests Per Second

Simple CGI Script

nnnnnn

50
45
A~ —~—ES45
;‘g o= — 1GHz
> /
2 30 8- rx4640
0 25 1.5
¢ 15 .‘//
10
5
0
N v ™ %)
Q,oc’\\ Q)«\(’A QJ«\@ @o&
\\}Q 0\& 0\\ $k
O O O O
C)OQ OOQ OOQ OOQ

More is better

38

nnnnnn

I Apache — CPU Utilization
Simple CGI Script
400
250 —
S ~— ES45

c 300 // 1GHz
= 250
S
S oo S 8- rx4640
= 1.5 GHz
a¥
O 100 ;/
50
0
o&\/ 0"4’% {@b‘ o"\\%
& & N\ &
S S S S
OQO OQCJ OQO OQQ
O O @) @)

| _ess is better 39

nnnnnn

I Various Improvement Successes

Heavy O loads to disks performed very poorly
rx2600 2,084 10s/sec

Spinlock Analysis showed VERY heavy usage of
MMG for the IPF which didn’t appear for the
Alpha

Further Analysis showed IPF was never caching
any KPB structures.

One line fix >
rx2600 10,999 IOs/sec

nnnnnn

I OTSSMOVE and OTSSIMOVEM
OTSSMOVE and OTS$MOVEM are low level

routines called by compilers to move data.
Macro calls this for MOVC3 and MOVCS5 instructions

C calls this routine for memcpy
BLISS call this for ch$move

Highly optimized versions of these routines have
recently been integrated into OpenVMS

This resulted in signiticant performance
improvements for tests that did heavy memory
copies

The RMS1 test improved by about 15% for single stream
and by about 38% for 4 streams!

41

Queue |Instructions ity

The various VAX architecture queue instructions

were initially implemented as system services

These needed to be done in Kernel mode to insure the operation was
atomic

We knew they would be slow and they were as shown by a small test
program doing insque/remque in loop.

ES45: 0:05.21 rx2600: 2:58.21 (34 times slower)

The implementation of the queue instructions has been
changed to no longer use the system service dispatcher

They now use the EPC (Enter Privileged Code)

rx2600: 0:14.59 (< 3 times slower)

42

nnnnnn

I Areas that are Slower on IPF

There are several areas where the equivalent
operations on IPF systems are slower
Queue Instructions

Various PAL calls which now go through the system
service dispatcher

Exception Handling
Exceptions Frames much larger
Finding Exception Handlers takes longer

Images also are typically 3 times as large
This can impact image activation time
Requires More 10
Increase page faults

43

Projected Performance Crossover
Point predicted two years ago

ITANIUM.

LS

ITANIUM

I Conclusions i

1.5GHz rx4640 Integrity systems perform similarly
to 1GHz ES45 Alpha systems

There will continue to be improvements in both the
OS and Compilers prior to the release of

OpenVMS V8.2

OS improvements coupled with tuture hardware

speed ups will allow OpenVMS on IPF to out
perform OpenVMS on Alpha

