# Itanium 2 Platform and Technologies









### Intel's Itanium platform

- Top 500 lists: Intel leads with 84 Itanium® 2-based systems
- Continued growth bin MSS: Itanium processors
- **RISC to Itanium migration enterprise and HPC**



### **Commitment to Itanium® Architecture**

- 4 generations of Itanium® 2-based products in definition and development
- >1200 Intel software engineers working on Itanium 2-based tools, compilers, and ecosystem
- >5000 certified applications available
- Excellent support of x86 applications with IA-32 Execution Layer technology



Heavy investment reflects deep commitment

### Itanium® Architecture Positioning

- Focused on the applications typically served by RISC, targeting:
- General RISC migration (2-512P+)
- Large SMP/ mainframe-class

 High performance computing (HPC)



- Higher performance & scalability driven by core architectural differences, e.g.
  - EPIC technology
  - Massive on die resources
  - True 64-bit addressability
- Greater RAS capabilities
  - Designed for 99.999%+ uptime
  - Machine Check Architecture, bad data containment, cache reliability,...
- Offered in high end systems from leading enterprise hardware vendors

   HP\* 2 - 128P 256\*

Cost effective alternative to proprietary RISC

- Outstanding price/performance<sup>1</sup>
  - Top TPC-C performance on Linux\*, Windows\*,HP-UX\*, Oracle\*, & SQL\*
  - 30% better \$/tpmC than RISC<sup>1</sup>
  - Huge advance in performance & platform features coming on Montecito

#### Greater choice

- System vendors
- Operating systems
- Software applications
- Continued strong ecosystem growth

#### Focused on replacing RISC, complementary to Intel® Xeon™ processor

intel

oduct plans, descriptions, and dates are estimates only and subject to change without notice.

\*Other names and brands may be claimed as the property of others

Performance tests and ratings are measured using specific computer systems and/or components and reflect the approximate performance of Intel products as measured by those tests. Any difference in system hardware or software design or configuration may affect actual performance. Buyers should consult other sources of information to evaluate the performance of systems or components they are considering purchasing. For more information on performance tests and on the performance of Intel products, reference www.intel.com/procs/perf/limits.htm or bail (U.S.) 1-800-628-6686 or 1-916-356-3104

### Intel® Itanium<sup>™</sup> Processor Block Diagram

Itanium<sup>™</sup> Processor Microarchitecture Overview



### 64-Bit Addressing – How big is it?

#### 32-bit Addressing

- 1 cm
- one CD cover height

#### **64-bit Addressing**

- 429496 km
- distance between Earth and Moon

**2^32** = 4,294,967,296 **2^64** = 18,446,744,073,709,551,616





# Parallelism



#### Long Term Goal: 1M Transactions per Α Minute In 2007 Today



Shown are representations of 64-way system (today) and 4-way system (2007). Not to scale.

All products, dates, comparisons, and information are preliminary and subject to change without notice.





With planned performance improvements, a 4-way Itanium®-based server in '07 could deliver equivalent OLTP of a current 64-way system, delivering dramatically Lower TCO

 Lower power consumption Higher density





# **Itanium® Architecture Innovations**

#### 2004 & Prior Enhancements

EPIC architecture Enhanced Machine Check Architecture FMAC for floating-point leadership Largest on-die resources for demanding workloads



#### 2005 Planned Enhancements

Dual-core; Multi-threading Virtualization Dynamic Performance Boost (Foxton) Demand Based Switching (DBS) PCI Express, DDR II Enhanced System Bus Bandwidth, cache reliability, and processor performance

#### Future Emmanuements

Common platform architecture with Intel® Xeon™ processor family Multi-core

Enhanced Virtualization Enhanced I/O, memory & RAS



Innovations deliver Intel's highest performance, reliability and scalability solutions for the enterprise

All products, dates, comparisons, and information are preliminary and subject to the change with out so the property of others



- Dual-Core
  - 2 Processor cores per physical package each with independent L3 cache
- Multi-Threading Technology
  - 2 Threads active per Core (4 per Socket)
  - High CPU utilization for multithreaded server applications

int<sub>e</sub>l.

Montecito hardware-enhanced thread-level parallelism with 2 cores in a single package

## **Montecito Status**

- Montecito: Next Itanium® Processor Family product  $\bigcirc$ after Madison-9M
  - Dual core, Multi-threading, 24MB cache
  - Platform compatible with Itanium® 2 processor
  - First 1.72 billion transistors processor
  - Significant performance jump with lower power
    - 1.5-2x over Madison-9M
    - 100W
  - Demo'd last year, first samples were in Sept'04
  - **OEMs currently testing Montecito platforms**
  - Seeding programs
  - Montecito shipping in 1H 2006

#### Montecito also brings new technologies $\bigcirc$

- Foxton: Performance boost while maintaining power
- Multi-threading
- Vanderpool: Virtualization
- Reliability with Pellston, more hardware error correction
- **Demand Based Switching: Server power savings**





### inte

### **A New Architectural Approach**

# Platform Focused - \*T

### Uses Cache Cache Interconnects



С

### Virtualization Usage Models

Enables running separate production and development environments on same server



### **Advantage of HW virtualization**



### Dramatic Benefits Expected

#### Increased Robustness

- Reduced Complexity
- Minimizing SW conflict

### Improved Flexibility

- Simplify VMM development
- Standard interfaces
- Support legacy environment

### Enhanced Functionality

Support for latest HW capability

#### **Better Performance**

- Reduce emulation overhead
- Access to physical resource

Intel driving virtualization technology across all server platforms

# Virtualization Issues

Ring

- 3

- Virtualized OS's "De-Privileged"
- Ring-0 code run in Rings 1-3
- Results in:
  - Excessive faulting
  - Ring compression
  - Manageability and stability issues
- Virtualization SW operates in Ring-0

int

Traditional OS domain



Virtaualization SW uses a combination of emulation, dynamic patching, and binary translation to work around these problems

15

# - Virtualization Extensions

#### New CPU execution mode

- OS's run at expected privilege levels
- Enables new privilege level (0P) for Monitor

# HW-based mode transition

- Programmable VM transition triggers to streamline process
- Excessive trapping eliminated by design
- Address compression eliminated by design
  - New instructions to support entry, exit, configuration and maintenance
  - Memory protection within the CPU





# **Current Overhead**

Typical percentage of virtualization overheads associated with binary translation, memory and I/O virtualization





# Itanium Virtualization Technology



### Intel's Comprehensive Approach to Power Management

#### **Silicon Advances**

- Process technologies Market
- Materials
- Circuit design
- Microarchitecture
- Packaging



#### **Intel Power Tools**

- Demand Based Switching
- Power Calculator
- Power Monitor
- Datacenter Framework

#### **Platform & Architectural Advances**

- Multi-core Processors
- Hyper-Threading Technology
- Low power/high speed memory
- Platform/architectural flexibility
- Enhanced Utilization (virtualization)
- Software Optimization

#### Whitepaper

http://www.intel.com/business/bss/infrastructure/enterprise/power\_thermal.pdf

All dates and products specified are for planning purposes only and are subject to change.



Intel and the Intel logo are trademarks or registered trademarks of Intel Corporation or its subsidiaries in the United States or other countries.

\*Other names and brands may be claimed as the property of others.

### **Future Technology: Intel<sup>®</sup> I/O Acceleration Technology**





- A PCI Express\* "lane" are four wires
  - One differential pair for transmit and another pair for receive
  - Signaling is at 2.5 GHz with 8b/10b encoding
- Connectors are defined for x1, x4, x8, x16 lanes providing an opportunity to scale bandwidth

| Lanes | Bandwidth (peak) |
|-------|------------------|
| x1    | 500 MB/s         |
| x4    | 2 GB/s           |
| x8    | 4 GB/s           |
| x16   | 8 GB/s           |





- Board Area Reduced by 53%
- Board Layer Count Reduction Opportunity
- Component Count Decreases



# **PCI-Express Bandwidth**



### Foxton Technology On-demand Performance Boost



- Example:
  - Processor = 1.6 GHz
  - Processor with Foxton = 1.6GHz + up to 10% (depending on app)
- Largest performance boost on transaction based applications (databases, BI, ERP,...)
- No additional changes to OEM systems required

#### Performance Boost with Foxton Technology



**Industry Standard Benchmarks** 

# Foxton delivers on-demand performance boost for greater productivity and efficiency



<sup>1</sup> Performance boost varies by application. Values are estimates

Performance tests and ratings are measured using specific computer systems and/or components and reflect the approximate performance of Intel products as measured by those tests. Any difference in system hardware or software design or configuration may affect actual performance. Buyers should consult other sources of information to evaluate the performance of systems or components they are considering purchasing. For more information on performance tests and on the performance of Intel products, reference www.intel.com/procs/perf/limits.htm or test (I.S.S.1300-628-8088). Or GRU 25-8180. Or GRU 25-8180. Or components they are considering to the performance of tests and on the performance of Intel products, reference www.intel.com/procs/perf/limits.htm or test and on the performance of Intel products.

TANIUM



## **Pellston Technology**



#### **Cache Reliability** Benefits

- Automatically disables cache lines in the event of hard cache memory error
- Removes impact of 2-bit ECC errors in L3 cache that have single bit hard failures
- Allows processor and system to continue normal operation

### How it works

- 1) Cache line access with error detected
- 2) Cache line is tested for hard error
- 3) If hard error is detected, cache line is disabled while processor and system continue normal operation

### Pellston helps improve reliability and uptime



Performance tests and ratings are measured using specific computer systems and/or components and reflect the approximate performance of Intel products as measured by those tests. Any difference in system hardware or software design or configuration may affect actual performance. Buyers should consult other sources of information to evaluate the performance of systems or components they are considering purchasing. All products, dates, and figures are preliminary and are subject to change without any notice. Copyright Others

## **Performance Innovations**

 Intel® Itanium® 2 Processor Performance Strategy: increased performance/thread, then increased number of threads



- Driven by:
  - Increased frequency
  - Increased L3 cache
  - Increased bus speed



- Driven by:
  - Dual core Montecito
  - Multi-threading support in Montecito

#### **Montecito: 4 virtual processors**

Third-party marks and brands are the property of their respective owners; Performance tests and ratings are measured using specific computer systems and/or components and reflect the approximate performance of Intel products as measured by those tests. Any difference in system hardware or software design or configuration may affect actual performance. Buyers should consult other sources of information to evaluate the performance of systems or components they are considering purchasing. All products, dates, and figures are preliminary and are subto to change without any notice. Copyright © Intel Corporation 2004.

# Intel Enabling Resources

### Platforms



HT/ Dual/Multi-Core Platforms Remote Access

### SW Tools and Expertise





Intel Compilers Intel Threading Toolkit, Performance Libraries, Whitepapers SW Engineers

### Extensive Support Services

Early Access Program

Intel Software College

Application Tuning Centers

Intel Solution Services

### **Helping Users and ISVs Optimize Solutions Performance**





# **IA-32 Execution Layer Functionality**

 IA-32 Execution Layer (IA-32 EL) supports 32-bit applications running on Itanium® 2-based systems



inte

- Historically, support for IA-32 applications has been carried out by on-die hardware
- Today, with supporting operating systems, 32-bit applications run using IA-32 EL
- IA-32 EL runs as part of the operating system and is transparent to the end user<sup>1</sup>
- IA-32 EL provides improved performance over on-die hardware<sup>2</sup>
  - Broadens the range of IA-32 applications that run well on Itanium architecture
  - Improves flexibility to add enhancements and support for new IA-32 instructions
  - Primary or performance-sensitive applications should be run on their native hardware platforms for optimal performance and capabilities

 <sup>1</sup> IA-32 EL is turned on by default on some supporting operating systems but must be installed on some others. Once installed, no further end user intervention is required under normal operating conditions.
 <sup>2</sup> Performance varies by application.

> IA-32 EL improves support for IA-32 applications running on Itanium® 2-based systems





### Intel® Itanium® Processor Family Roadmap

| Lead             | Leading Performance                                        |                                                                                                                                                                                                                             |                                                   |                                                                                                                                                                                               |                                             |  |
|------------------|------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------|--|
| 4S+              | Itanium® 2<br>Processor (Madison 9M)<br>1.6 GHz, 9M        | <b>Montecito</b><br>Dual Core, 24MB<br>Multi-threading                                                                                                                                                                      | Montvale<br>Dual Core,<br>Multi-threading         | Tukwila<br>Multi-core                                                                                                                                                                         | Poulson                                     |  |
| Leading \$/FLOPS |                                                            |                                                                                                                                                                                                                             |                                                   |                                                                                                                                                                                               |                                             |  |
| 25               | Itanium® 2<br>Processor (Fanwood)<br>1.6 GHz, 3M, DP       | Millington<br>DP, Montecito-based                                                                                                                                                                                           | DP Montvale<br>DP, Montvale-based                 | Dimona<br>DP, Tukwila-based                                                                                                                                                                   | Future<br>DP, Poulson-based                 |  |
| Lower Power      |                                                            |                                                                                                                                                                                                                             |                                                   |                                                                                                                                                                                               |                                             |  |
| 2S               | LV Itanium® 2<br>Processor (LV Fanwood)<br>1.3 GHz, 3M, DP | LV Millington<br>DP, Low Voltage,<br>Montecito-based                                                                                                                                                                        | LV Montvale<br>DP, Low Voltage,<br>Montvale-based | LV Dimona<br>DP, Low Voltage,<br>Tukwila-based                                                                                                                                                | Future<br>DP, Low Voltage,<br>Poulson-based |  |
|                  | New Technologies                                           |                                                                                                                                                                                                                             |                                                   |                                                                                                                                                                                               |                                             |  |
|                  |                                                            | <ul> <li>Multi-core</li> <li>Multi-threading</li> <li>Dynamic performance boost (Foxton)</li> <li>Dynamic power management (DBS)</li> <li>Cache reliability (Pellston)</li> <li>Intel® Virtualization Technology</li> </ul> |                                                   | <ul> <li>Multi-core enhancements</li> <li>Enhanced RAS</li> <li>Enhanced virtualization</li> <li>Enhanced I/O &amp; memory</li> <li>Common system architecture w/ Intel®<br/>Xeon™</li> </ul> |                                             |  |



# Thank You!





# Legal Disclaimer

**Notice:** This document contains information on products in the design phase of development. The information here is subject to change without notice. Do not finalize a design with this information. Contact your local Intel sales office or your distributor to obtain the latest specification before placing your product order.

INFORMATION IN THIS DOCUMENT IS PROVIDED IN CONNECTION WITH INTEL® PRODUCTS. EXCEPT AS PROVIDED IN INTEL'S TERMS AND CONDITIONS OF SALE FOR SUCH PRODUCTS, INTEL ASSUMES NO LIABILITY WHATSOEVER, AND INTEL DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY RELATING TO SALE AND/OR USE OF INTEL PRODUCTS, INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT, OR OTHER INTELLECTUAL PROPERTY RIGHT. Intel products are not intended for use in medical, life saving, or life sustaining applications. Intel may make changes to specifications, product descriptions, and plans at any time, without notice.

All products, dates, and figures are preliminary for planning purposes and are subject to change without notice.

Designers must not rely on the absence or characteristics of any features or instructions marked "reserved" or "undefined." Intel reserves these for future definition and shall have no responsibility whatsoever for conflicts or incompatibilities arising from future changes to them.

The Intel products discussed herein may contain design defects or errors known as errata which may cause the product to deviate from published specifications. Current characterized errata are available on request.

Copies of documents which have an order number and are referenced in this document, or other Intel literature, may be obtained by calling 1-800-548-4725, or by visiting Intel's website at http://www.intel.com.

Intel and Intel branded products are trademarks or registered trademarks of Intel Corporation or its subsidiaries in the United States and other countries. Copyright © 2004, Intel Corporation. All rights reserved.

\*Other names and brands may be claimed as the property of others.









### **Building Success for Itanium® Architecture**

| Success Factor                   | Progress in '04                                                                                                                                                                                                                                                              |
|----------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Sales growth                     | <ul> <li>~3X growth for Itanium 2-based systems in revenue<sup>1</sup></li> <li>1.8X growth for Itanium 2-based systems in units<sup>1</sup></li> <li>MSS up 200% over 1 year, while RISC stayed flat<sup>1</sup></li> </ul>                                                 |
| Adoption by<br>business leaders  | <ul> <li>Deployed by 70 of the Global 100, including 9 of the top 10<sup>2</sup></li> <li>&gt;2.5X growth on Top 500* List of supercomputers in 1 year<sup>3</sup></li> <li>94% of surveyed customers with Itanium 2-based platforms plan to buy more<sup>4</sup></li> </ul> |
| Support from<br>industry leaders | <ul> <li>&gt;2X growth in applications<sup>2</sup></li> <li>New platform releases or announcements</li> </ul>                                                                                                                                                                |
|                                  |                                                                                                                                                                                                                                                                              |

Itanium architecture made strong progress in '04 & momentum continues in '05



Product plans, descriptions, and dates are estimates only and subject to change and hotelemed as the property of others