Compiling for Performance
on hp OpenVMS 164

Doug Gordon
Original Presentation by Bill Noyce

European Technical Update Days,
2005

Compilers discussed

1C, Fortran, [COBOL, Pascal, BASIC]
— Share GEM optimizer & code generator
— Much in common with Alpha compilers
1 C++
— Different optimizer & code generator
— Well-tuned for Itanium

Performance Topics

1 Alignment

i Memory

1 Floating Point

1 Optimization Levels

Alignment

1 Use natural alignment whenever possible

1 Unaligned data is handled in software

— When compiler knows, ugly code adds a few
cycles

— When unexpected, takes an expensive trap

— These traps are 5x more expensive than on
Alpha

Alignment

1 Use:
— Fortran /align=(...) /warn=alignment
— C & C++ #pragma member_alignment

— C & C++ _ unaligned attribute where needed
— COBOL /align & *DC SET ALIGNMENT

_W:\V/e][ok
— C & C++ #pragma nomember_alignment
— C & C++ #pragma pack
— Fortran SEQUENCE attribute

Memory

1 CPU speed advancing faster than memory
1 Big caches can help

1 Design algorithms for cache locality

1 Allow compiler to schedule loads early

1 Avoid apparent aliasing

Memory - Aliasing

1 SAXMAIN.FOR 1 SAXC.C
real a(1000) void saxpy(int *np,
real b(1000,1000) float *ap,
real ¢(1000,1000) float *x, float *y)
do j=1,1000 {
do i=1,1000 Int i;
call saxpy(1000, for (I=0; I<*np; 1++)
a()), b(1,1), c(1.))) yli] = y[i] +*ap * x[i];
enddo }
enddo

end

Memory - Aliasing

1 Store to y[I] might affect *ap or x[i+1]

1 Compiled code completes one iteration
before starting the next

12 billion FLOPs Iin 10 secs = 200 MFLOPS
1 ldiomatic C makes no difference:

for (I=0; i<*np; i++) *y++ += *ap * *x++;
1/noansi_alias is even worse (alias *np):

2 billlon FLOPS In 12 secs =170 MFLOPS

Memory - Aliasing

1 Eliminate aliasing with *ap:
float t = *ap;
for (1=0; I<*np; I++)
yli] +=1t* X[i];
1 2 billion FLOPs in 3 secs =670 MFLOPS

8 Compiler produced two versions of loop, with
test for alias between x & y

1 Guarded loop gets unrolled and scheduled
1 Guarded loop not eligible for software pipelining

Memory - Aliasing

1 Rewrite in Fortran to remove all aliasing

subroutine saxpy(n,a,x,y)
Integer n, |
real a, x(n), y(n)
doi=1,n

y(1) = y(1) + a*x()
enddo
end

1 2 billion FLOPs in 2 secs = 1000 MFLOPS
1 Loop is pipelined with no checks needed

Memory - Aliasing

Use Itanium features (speculative load)
— add extern “C” & compile with C++

2 billlion FLOPS In 8 secs = 250 MFLOPS

Eliminate alias with *np:
Int n = *np; for (i=0; i<n; ...)
Loop is pipelined, and checks inserted
2 billion FLOPs in 2.2 secs = 900 MFLOPS

Add /assume=noaccuracy_sensitive
2 billion FLOPS in 1.9 secs = 1100 MFLOPS

Floating Point

1 Use native IEEE floating-point formats

1 Same precision & essentially same range
as VAX F & G formats

1 VAX formats (F, D, G) are emulated In
software by converting to/from IEEE

— Performance cost up to 5x
1 |[EEE formats also work well on Alpha

Floating Point

1 |f flles must use VAX formats, convert on
Input & output

1In Fortran, CONVERT= makes it easy
1 Otherwise, CVT$ routines can be used

Floating Point

1 |[EEE formats can support new semantics:
— Gradual underflow (denorms)
— Infinity and NaN instead of traps

1 Selected by main program’s compilation:
— [IEEE_mode = FAST
— /IEEE_mode = UNDERFLOW_TO_ZERO
— /IEEE_mode = DENORM_RESULT

1 Producing or using a denorm can be slow
— Traps to “software assistance” handler
— Can avoid by choosing flush-to-zero semantics

Floating Point

1 One-at-a-time math 1 Fused mul-add
X = a*b + c*d X = a*b + c*d
1. multiply a*b (& round) 1. multiply a*b (& round)
2. multiply c*d (& round) 2. multiply c*d & add
3. add the products (round only at end)

1 These produce slightly different results

1 Fused version Is often more accurate, but
ess predictable

1 Fused version runs faster

Floating Point

1 /assume=noaccuracy_sensitive enables
transformations that can change results

— Fused mul-add
— Replace divide with multiply by inverse
— Tree height reduction

1 Some apps are “sensitive” to any change
— Therefore, these are disabled by default

1 Poor abbreviation: assume=noaccuracy
— Doesn’'t mean what this sounds like

Optimization Levels

1 OpenVMS compilers default to high optimization
1 You may reduce opt level for debugging
1 /opt=level= (for GEM compilers)

e O:
. simple peephole optimizations

. traditional opts: CSE, hoist, strength

. adds loop unrolling

. adds inlining & software pipelining (default)

. adds loop interchange & blocking, may help or hurt

°
o b W DN -

very naive code, no optimization at all (= /noopt)

Optimization Levels

1 Default (high) level is designed to be safe for
standard-conforming programs

§ Additional transformations via switches:
— /assume=noaccuracy_sensitive
— /assume=nopointers_to globals
— /assume=nomath_errno

i More /assume= switches available for programs
that break the language standard’s rules

1 “Optimizer bugs” are usually user errors
2 If it Is our bug, we want to fix it

Performance Topics

1 Alignment

i Memory

1 Floating Point

1 Optimization Levels

Questions?

	Compiling for Performance�on hp OpenVMS I64
	Compilers discussed
	Performance Topics
	Alignment
	Alignment
	Memory
	Memory - Aliasing
	Memory - Aliasing
	Memory - Aliasing
	Memory - Aliasing
	Memory - Aliasing
	Floating Point
	Floating Point
	Floating Point
	Floating Point
	Floating Point
	Optimization Levels
	Optimization Levels
	Performance Topics
	Questions?

