
Compiling for PerformanceCompiling for Performance
on hp OpenVMS I64on hp OpenVMS I64

Doug GordonDoug Gordon
Original Presentation by Bill NoyceOriginal Presentation by Bill Noyce
European Technical Update Days, European Technical Update Days,

20052005

Compilers discussedCompilers discussed

C, Fortran, [COBOL, Pascal, BASIC]C, Fortran, [COBOL, Pascal, BASIC]
–– Share GEM optimizer & code generatorShare GEM optimizer & code generator
–– Much in common with Alpha compilersMuch in common with Alpha compilers
C++C++
–– Different optimizer & code generatorDifferent optimizer & code generator
–– WellWell--tuned for Itaniumtuned for Itanium

Performance TopicsPerformance Topics

AlignmentAlignment
MemoryMemory
Floating PointFloating Point
Optimization LevelsOptimization Levels

AlignmentAlignment

Use natural alignment whenever possibleUse natural alignment whenever possible
Unaligned data is handled in softwareUnaligned data is handled in software
–– When compiler knows, ugly code adds a few When compiler knows, ugly code adds a few

cyclescycles
–– When unexpected, takes an expensive trapWhen unexpected, takes an expensive trap
–– These traps are 5x more expensive than on These traps are 5x more expensive than on

AlphaAlpha

AlignmentAlignment
Use:Use:
–– Fortran /align=(Fortran /align=(……) /warn=alignment) /warn=alignment
–– C & C++ #C & C++ #pragmapragma member_alignmentmember_alignment
–– C & C++ __unaligned attribute where neededC & C++ __unaligned attribute where needed
–– COBOL /align & *DC SET ALIGNMENTCOBOL /align & *DC SET ALIGNMENT

Avoid:Avoid:
–– C & C++ #C & C++ #pragmapragma nomember_alignmentnomember_alignment
–– C & C++ #C & C++ #pragmapragma packpack
–– Fortran SEQUENCE attributeFortran SEQUENCE attribute

MemoryMemory

CPU speed advancing faster than memoryCPU speed advancing faster than memory
Big caches can helpBig caches can help
Design algorithms for cache localityDesign algorithms for cache locality
Allow compiler to schedule loads earlyAllow compiler to schedule loads early
Avoid apparent aliasingAvoid apparent aliasing

Memory Memory -- AliasingAliasing
SAXMAIN.FORSAXMAIN.FOR

real a(1000)real a(1000)
real b(1000,1000)real b(1000,1000)
real c(1000,1000)real c(1000,1000)
do j=1,1000do j=1,1000

do i=1,1000do i=1,1000
call saxpy(1000,call saxpy(1000,

a(ja(j), b(1,i), c(1,j))), b(1,i), c(1,j))
enddoenddo

enddoenddo
endend

SAXC.CSAXC.C

void void saxpysaxpy((intint **npnp,,
float *float *apap,,
float *x, float *y)float *x, float *y)

{{
intint i;i;
for (i=0; i<*for (i=0; i<*npnp; i++); i++)

y[iy[i] =] = y[iy[i] + *] + *apap * * x[ix[i];];
}}

Memory Memory -- AliasingAliasing

Store to Store to y[iy[i] might affect *] might affect *apap or x[i+1]or x[i+1]
Compiled code completes one iteration Compiled code completes one iteration
before starting the nextbefore starting the next
2 billion 2 billion FLOPsFLOPs in 10 in 10 secssecs = 200 MFLOPS= 200 MFLOPS
Idiomatic C makes no difference:Idiomatic C makes no difference:
for (i=0; i<*for (i=0; i<*npnp; i++) *y++ += *; i++) *y++ += *apap * *x++;* *x++;
//noansi_aliasnoansi_alias is even worse (alias *is even worse (alias *npnp):):
2 billion FLOPS in 12 2 billion FLOPS in 12 secssecs = 170 MFLOPS= 170 MFLOPS

Memory Memory -- AliasingAliasing
Eliminate aliasing with *Eliminate aliasing with *apap::
float t = *float t = *apap;;
for (i=0; i<*for (i=0; i<*npnp; i++); i++)

y[iy[i] += t *] += t * x[ix[i];];
2 billion 2 billion FLOPsFLOPs in 3 in 3 secssecs = 670 MFLOPS= 670 MFLOPS
Compiler produced two versions of loop, with Compiler produced two versions of loop, with
test for alias between x & ytest for alias between x & y
Guarded loop gets unrolled and scheduledGuarded loop gets unrolled and scheduled
Guarded loop not eligible for software pipeliningGuarded loop not eligible for software pipelining

Memory Memory -- AliasingAliasing
Rewrite in Fortran to remove all aliasingRewrite in Fortran to remove all aliasing
subroutine subroutine saxpy(n,a,x,ysaxpy(n,a,x,y))
integer n, iinteger n, i
real a, real a, x(nx(n),), y(ny(n))
do i=1,ndo i=1,n

y(iy(i) =) = y(iy(i) + a*) + a*x(ix(i))
enddoenddo
endend
2 billion 2 billion FLOPsFLOPs in 2 in 2 secssecs = 1000 MFLOPS= 1000 MFLOPS
Loop is pipelined with no checks neededLoop is pipelined with no checks needed

Memory Memory -- AliasingAliasing
Use Itanium features (speculative load)Use Itanium features (speculative load)
–– add extern add extern ““CC”” & compile with C++& compile with C++

2 billion FLOPS in 8 2 billion FLOPS in 8 secssecs = 250 MFLOPS= 250 MFLOPS

Eliminate alias with *Eliminate alias with *npnp::
intint n = *n = *npnp; for (i=0; i<n; ; for (i=0; i<n; ……))

Loop is pipelined, and checks insertedLoop is pipelined, and checks inserted
2 billion 2 billion FLOPsFLOPs in 2.2 in 2.2 secssecs = 900 MFLOPS= 900 MFLOPS

Add /assume=Add /assume=noaccuracy_sensitivenoaccuracy_sensitive
2 billion FLOPS in 1.9 2 billion FLOPS in 1.9 secssecs = 1100 MFLOPS= 1100 MFLOPS

Floating PointFloating Point

Use native IEEE floatingUse native IEEE floating--point formatspoint formats
Same precision & essentially same range Same precision & essentially same range
as VAX F & G formatsas VAX F & G formats
VAX formats (F, D, G) are emulated in VAX formats (F, D, G) are emulated in
software by converting to/from IEEEsoftware by converting to/from IEEE
–– Performance cost up to 5xPerformance cost up to 5x
IEEE formats also work well on AlphaIEEE formats also work well on Alpha

Floating PointFloating Point

If files must use VAX formats, convert on If files must use VAX formats, convert on
input & outputinput & output
In Fortran, CONVERT= makes it easyIn Fortran, CONVERT= makes it easy
Otherwise, CVT$ routines can be usedOtherwise, CVT$ routines can be used

Floating PointFloating Point
IEEE formats can support new semantics:IEEE formats can support new semantics:
–– Gradual underflow (Gradual underflow (denormsdenorms))
–– Infinity and Infinity and NaNNaN instead of trapsinstead of traps

Selected by main programSelected by main program’’s compilation:s compilation:
–– //IEEE_modeIEEE_mode = FAST= FAST
–– //IEEE_modeIEEE_mode = UNDERFLOW_TO_ZERO= UNDERFLOW_TO_ZERO
–– //IEEE_modeIEEE_mode = DENORM_RESULT= DENORM_RESULT

Producing or using a Producing or using a denormdenorm can be slowcan be slow
–– Traps to Traps to ““software assistancesoftware assistance”” handlerhandler
–– Can avoid by choosing flushCan avoid by choosing flush--toto--zero semanticszero semantics

Floating PointFloating Point

OneOne--atat--aa--time mathtime math
x = a*b + c*dx = a*b + c*d

1. multiply a*b (& round)1. multiply a*b (& round)
2. multiply c*d (& round)2. multiply c*d (& round)
3. add the products3. add the products

Fused Fused mulmul--addadd
x = a*b + c*dx = a*b + c*d

1.1. multiply a*b (& round)multiply a*b (& round)
2.2. multiply c*d & addmultiply c*d & add

(round only at end)(round only at end)

These produce slightly different resultsThese produce slightly different results
Fused version is often more accurate, but Fused version is often more accurate, but
less predictableless predictable
Fused version runs fasterFused version runs faster

Floating PointFloating Point

/assume=/assume=noaccuracy_sensitivenoaccuracy_sensitive enables enables
transformations that can change resultstransformations that can change results
–– Fused Fused mulmul--addadd
–– Replace divide with multiply by inverseReplace divide with multiply by inverse
–– Tree height reductionTree height reduction
Some apps are Some apps are ““sensitivesensitive”” to any changeto any change
–– Therefore, these are disabled by defaultTherefore, these are disabled by default
Poor abbreviation: assume=Poor abbreviation: assume=noaccuracynoaccuracy
–– DoesnDoesn’’t mean what this sounds liket mean what this sounds like

Optimization LevelsOptimization Levels

OpenVMS compilers default to high optimizationOpenVMS compilers default to high optimization
You may reduce opt level for debuggingYou may reduce opt level for debugging
/opt=level= (for GEM compilers)/opt=level= (for GEM compilers)
•• 0: very na0: very naïïve code, no optimization at all (= /ve code, no optimization at all (= /nooptnoopt))
•• 1: simple peephole optimizations 1: simple peephole optimizations
•• 2: traditional opts: CSE, hoist, strength2: traditional opts: CSE, hoist, strength
•• 3: adds loop unrolling3: adds loop unrolling
•• 4: adds 4: adds inlininginlining & software pipelining (default)& software pipelining (default)
•• 5: adds loop interchange & blocking, may help or hurt5: adds loop interchange & blocking, may help or hurt

Optimization LevelsOptimization Levels
Default (high) level is designed to be safe for Default (high) level is designed to be safe for
standardstandard--conforming programsconforming programs
Additional transformations via switches:Additional transformations via switches:
–– /assume=/assume=noaccuracy_sensitivenoaccuracy_sensitive
–– /assume=/assume=nopointers_to_globalsnopointers_to_globals
–– /assume=/assume=nomath_errnonomath_errno

More /assume= switches available for programs More /assume= switches available for programs
that break the language standardthat break the language standard’’s ruless rules
““Optimizer bugsOptimizer bugs”” are usually user errorsare usually user errors
If it is our bug, we want to fix itIf it is our bug, we want to fix it

Performance TopicsPerformance Topics

AlignmentAlignment
MemoryMemory
Floating PointFloating Point
Optimization LevelsOptimization Levels

Questions?Questions?

	Compiling for Performance�on hp OpenVMS I64
	Compilers discussed
	Performance Topics
	Alignment
	Alignment
	Memory
	Memory - Aliasing
	Memory - Aliasing
	Memory - Aliasing
	Memory - Aliasing
	Memory - Aliasing
	Floating Point
	Floating Point
	Floating Point
	Floating Point
	Floating Point
	Optimization Levels
	Optimization Levels
	Performance Topics
	Questions?

