
lang5
a new programming language for OpenVMS

(and more)

Prof. Dr. Bernd Ulmann

27-OCT-2011

Hochschule fuer Oekonomie und Management, Frankfurt

1/40 Prof. Dr. Bernd Ulmann 27-OCT-2011

1. Foreword

Foreword

2/40 Prof. Dr. Bernd Ulmann 27-OCT-2011

Foreword 1. Foreword

This is. . .

. . . not the first talk about the programming language lang5.
Similar talks were given at the Connect symposium in 2010
etc. already.

. . . no introduction into programming lang5. These slides try
to give an impression of this language and to wet your
appetite to learn more.

How is this talk structured?

First lang5 is introduced and its installation on OpenVMS is
described.

The following section shows some simple but typical
programming examples.

Following this some rather complex examples are shown but
without a detailed analysis.

3/40 Prof. Dr. Bernd Ulmann 27-OCT-2011

2. Introduction

Introduction

4/40 Prof. Dr. Bernd Ulmann 27-OCT-2011

Missing VAX APL? 2. Introduction

First of all. . .

Do you miss VAX APL?

No: You obviously missed something!

Yes: Maybe lang5 will make you happy again!

5/40 Prof. Dr. Bernd Ulmann 27-OCT-2011

lang5 at a glance 2. Introduction

What is lang5?

lang5 is a dynamic programming language (dynamic typing
and memory management).

lang5 incorporates the main features of APL and Forth.

The lang5-interpreter is written in Perl and easily portable.

lang5 runs out of the box on OpenVMS (. . . and UNIX,
Windows. . .)

lang5 may be used to replace the much missed VAX APL
interpreter.

lang5 is free software.

lang5’s home is located at http://lang5.sf.net.

lang5-development began in 2009 and the current release is
V1.0.

6/40 Prof. Dr. Bernd Ulmann 27-OCT-2011

lang5 at a glance 2. Introduction

What is noteworthy about the language itself?

It is a stack oriented language just like Forth but. . .

. . . the stack can hold scalars as well as nested data structures!

The language can be extended by itself making use of so
called User Defined Words.

User defined words can act as unary or binary operators and
are thus equivalent to builtin operators.

Unary and binary operators are automatically applied in an
element wise fashion on the elements of nested data
structures which makes most of the explicit loops unnecessary
that one is used to in traditional languages.

Data structures can be dressed to denote their structural type
(like matrix, set etc.) – in addition to that operators can be
overloaded to act on such structures1.

1New feature as of V1.0.
7/40 Prof. Dr. Bernd Ulmann 27-OCT-2011

Installing lang5 3. Installing lang5

How to install lang5 on your OpenVMS system?

Make sure you have a Perl interpreter running on your system.

Download the lang5 distribution kit from
https://sourceforge.net/projects/lang5/files/.
This kit contains the interpreter, a lot of examples and the
complete documentation in PDF format.

Unpack the distribution kit at a location suitable for your
environment as the following example shows:

$ SET DEF DISK$SOFTWARE:[000000]
$ UNZIP DISK$SCRATCH:[SYSTEM]LANG5.ZIP

8/40 Prof. Dr. Bernd Ulmann 27-OCT-2011

Installing lang5 3. Installing lang5

Define a foreign command for invoking lang5 by adding a line
like this to your SYS$MANAGER:SYLOGIN.COM:

$ LANG5 :== PERL DISK$SOFTWARE:[LANG5]LANG5

Now users can invoke the lang5-interpreter like that:

ULMANN:FAFNER$ lang5

loading mathlib.5: Const..Basics..Set..Stat..Cplx..P..LA..Graph..NT..

loading stdlib.5: Const..Misc..Stk..Struct..

lang5>

9/40 Prof. Dr. Bernd Ulmann 27-OCT-2011

4. First steps

First Steps

10/40 Prof. Dr. Bernd Ulmann 27-OCT-2011

First steps 4. First steps

At a first glance, lang5 can be used like a stack based calculator
(so owners of HP calculators have a slight advantage :-)) as the
following example shows:

Simple scalar computations
scalar

1 trillian$ lang5
2 loading mathlib.5: Const..Basics..Set..Stat..Cplx..
3 P..LA..Graph..NT..
4 loading stdlib.5: Const..Misc..Stk..Struct..
5 lang5> 3 2 1 + * .
6 9
7 lang5> exit

scalar

11/40 Prof. Dr. Bernd Ulmann 27-OCT-2011

First steps 4. First steps

But lang5 is much more powerful since it supports a wealth of
array operations (too many to show here). Let us have a look at
computing the sum of all integers running from 1 to 100.

In a traditional language like C this can be accomplished like this:

Example 1 – Gauss sum in C
gauss.c

1 #include <stdio.h>
2

3 int main()
4 {
5 int i, sum = 0;
6

7 for (i = 1; i < 101; sum += i++);
8 printf("Result: %d\n", sum);
9 }

gauss.c

12/40 Prof. Dr. Bernd Ulmann 27-OCT-2011

First steps 4. First steps

The same problem can be solved in lang5 much more easily:

Example 2 – calculating
100∑
i=1

i in lang5:∑100
i=1 i can be interpreted a bit differently as the sum of the

elements of a vector with unit stride, running from 1 to 100.

Sum and factorial

1 100 iota 1 + ’+ reduce .
Sum and factorial

13/40 Prof. Dr. Bernd Ulmann 27-OCT-2011

Sum and factorial 4. First steps

How does this work? Let us have a look at the calculation of the
sum:

Sum

1 100 iota 1 + ’+ reduce .
Sum

100 iota generates a vector [0 1 2 ... 99].

Adding 1 to this vector yields [1 2 3 ... 100].

’+ pushes the operator ”+” onto the stack.

The reduce-function expects an operator on the top of the
stack (TOS for short) and a vector below. It then applies this
operator between all successive vector elements yielding 1 +
2 + 3 + ... + 100 in this case.

The .-function prints the TOS.

That’s all – no explicit loops, nothing. . .

14/40 Prof. Dr. Bernd Ulmann 27-OCT-2011

User defined words 4. First steps

This can be written better by introducing a user defined word
(UDW) to calculate the Gauss sum for any number found on the
top of the stack (so this UDW acts like a traditional function or
subroutine):

Example 3 – simple user defined words
gauss.5

1 # Define a new word "gauss":
2 : gauss iota 1 + ’+ reduce ;
3

4 # Use this new user defined word:
5 100 gauss .

gauss.5

This UDW gauss operates directly on the values found on the top
of the stack (TOS for short). This means that this word is neither
an unary nor a binary operator but acts more like a function (or
subroutine).

15/40 Prof. Dr. Bernd Ulmann 27-OCT-2011

Unary/binary operators 4. First steps

lang5 can do better – one particular strength is its builtin
mechanism of applying unary and binary operators (including
unary/binary UDWs) automatically to all elements of nested data
structures without any need for explicit loops as the following
example shows:

Example 4 – some builtin binary operators
Operators

1 lang5> [1 2 3] [4 5 6] + .
2 [5 7 9]
3 lang5> [1 2 3] 2 ** .
4 [1 4 9]
5 lang5>

Operators

16/40 Prof. Dr. Bernd Ulmann 27-OCT-2011

Unary/binary UDWs 4. First steps

This mechanism can also be used in the case of user defined words
which must be declared as unary or binary words respectively:

Example 5 – unary user defined words
gauss factorial.5

1 # Define two unary words:
2 : gauss(*) iota 1 + ’+ reduce ;
3 : factorial(*) iota 1 + ’* reduce ;
4

5 10 iota 1 + dup gauss . factorial .
gauss factorial.5

trillian$ lang5 gauss_factorial_unary.5

loading mathlib.5: Const..Basics..Set..Stat..Cplx..P..LA..Graph..NT..

loading stdlib.5: Const..Misc..Stk..Struct..

loading gauss_factorial_unary.5

[1 3 6 10 15 21 28 36 45 55]

[1 2 6 24 120 720 5040 40320 362880 3628800]

alberich$

17/40 Prof. Dr. Bernd Ulmann 27-OCT-2011

Calculating Fibonacci numbers 4. First steps

lang5 allows recursive calls of words, too:

Example 6 – the ubiquituous Fibonacci series:

fibr unary.5

1 : fib(*)
2 dup 2 < if drop 1 break then
3 dup 1 - fib swap 2 - fib +
4 ;
5

6 10 iota fib .
fibr unary.5

trillian$ lang5 fibr_unary.5

loading mathlib.5: Const..Basics..Set..Stat..Cplx..P..LA..Graph..NT..

loading stdlib.5: Const..Misc..Stk..Struct..

loading fibr_unary.5

[1 1 2 3 5 8 13 21 34 55]

18/40 Prof. Dr. Bernd Ulmann 27-OCT-2011

Calculating Fibonacci numbers 4. First steps

How does this work?

First of all, 10 iota fib . places a vector [0 1 2 ...
9] onto the TOS, calls the unary UDW fib and prints the
resulting vector.

fib is executed once for each element of the nested data
structure it is applied since it is a unary UDW.

The first step is to check if the value found on the TOS is less
than 2 – in this case fib will just drop the value and return 1.

Otherwise fib calls itself twice with new arguments smaller
by one and two respectively and returns the sum of the results
of these calls.

19/40 Prof. Dr. Bernd Ulmann 27-OCT-2011

Creating nested structures 4. First steps

lang5 offers a rich complement of functions and operators which
help generating and restructuring nested data structures. The two
main functions for this are shape and reshape:

Example 7 – shape and reshape
shape and reshape

1 lang5> [1 2 3] shape .

2 [3]

3 lang5> [[1 2 3] [4 5 6] [7 8 9]] shape .

4 [3 3]

5 lang5> 9 iota 1 + [3 3] reshape .

6 [

7 [1 2 3]

8 [4 5 6]

9 [7 8 9]

10]

11 lang5> 1 [2 2] reshape .

12 [

13 [1 1]

14 [1 1]

15]
shape and reshape

20/40 Prof. Dr. Bernd Ulmann 27-OCT-2011

Throwing dice 4. First steps

Suppose you have to simulate throwing a six sided dice 100 times
and calculate the arithmetic mean of the results you get:

Example 8 – throwing dice
throw dice.5

1 : throw_dice
2 6 over reshape
3 ? int 1 +
4 ’+ reduce swap /
5 ;
6

7 100 throw_dice .
throw dice.5

lang5> ’throw_dice.5 load
3.47

21/40 Prof. Dr. Bernd Ulmann 27-OCT-2011

Throwing dice 4. First steps

How does this work?

100 throw dice pushes 100 onto the stack and calls the
word throw dice.
6 over yields 100 6 100 on the stack.

The reshape-function expects a dimension vector (or a scalar
in the one-dimensional case) on the TOS and rearranges the
object found below accordingly. In this case the result is a
vector of the form [6 6 6 ... 6].
The unary ?-operator generates a pseudo random number
between 0 and the number found on the TOS. Since it is
unary it is automatically applied to all elements of the vector
we just created.
int 1 + gets rid of the fractional part of the resulting

vector elements and makes sure they are between 1 and 6.
’+ reduce then computes the sum of the vector elements.

swap / swaps this sum and the 100 from the beginning and
divides, yielding the arithmetic mean.

22/40 Prof. Dr. Bernd Ulmann 27-OCT-2011

Sum of cubes 4. First steps

Recently I found the following Fortran-example program2 which
prints all numbers between 1 and 999 which are equal to the sum
of the cubes of their digits:

sum of cubes.for

1 program sum_of_cubes
2 implicit none
3 integer :: H, T, U
4 do H = 1, 9
5 do T = 0, 9
6 do U = 0, 9
7 if (100*H + 10*T + U == H**3 + T**3 + U**3) &
8 print "(3I1)", H, T, U
9 end do

10 end do
11 end do
12 end program sum_of_cubes

sum of cubes.for

Horrible, isn’t it? Let’s do it in lang5:
2Cf. [Adams et al. 09][p. 41]

23/40 Prof. Dr. Bernd Ulmann 27-OCT-2011

Sum of cubes 4. First steps

The lang5-solution is a bit shorter (”Look Mom, no Loops!”):

Example 9 – sum of cubes
sum of cubes.5

1 : cube_sum(*)
2 "" split 3 ** ’+ reduce
3 ;
4

5 999 iota 1 + dup dup cube_sum == select .
sum of cubes.5

lang5> ’sum_of_cubes.5 load
[1 153 370 371 407]

24/40 Prof. Dr. Bernd Ulmann 27-OCT-2011

Sum of cubes 4. First steps

How does this work?

cube sum(*) defines an unary word.

This word pushes an empty string onto the stack and splits
the element found below yielding a vector of the individual
digits of the number which was found on the stack before.

It then calculates the cubes of the vector elements by 3 ** .

This vector of cubed digits is then summed using
’+ reduce . The word thus transforms a number found on

the TOS into the sum of its digit cubes.

999 iota 1 + yields [1 2 3 ... 999].

Since we need three of these vectors, it is duplicated twice.

Then cube sum is applied element wise to this vector.

== compares the result of this operation with the first copy
of the original vector yielding something like [1 0 0 ...].

select selects elements from a vector controlled by a
corresponding boolean vector.

25/40 Prof. Dr. Bernd Ulmann 27-OCT-2011

5. More complex examples

More complex examples

26/40 Prof. Dr. Bernd Ulmann 27-OCT-2011

List of primes 5. More complex examples

The following program implements a form of the sieve of
Eratosthenes which is quite popular in the APL community. The
basic ideas for generating a list of primes between 2 and a given
value n are these:

Generate a vector [1, 2, 3, ..., n].

Drop the first vector element yielding [2, 3, 4, ..., n].

Compute the outer product of two such vectors yielding a
matrix like this: 

4 6 8 10 . . .
6 9 12 15 . . .
8 12 16 20 . . .

10 15 20 25 . . .
...

...
...

...
. . .



27/40 Prof. Dr. Bernd Ulmann 27-OCT-2011

List of primes 5. More complex examples

Obviously this matrix contains everything but prime numbers,
so the next step is to determine which number contained in
the original vector [2, 3, ..., n] is not contained in this
matrix which can be done using the set operation in.

The result of in is a vector with n-1 elements each being 0
(its corresponding vector element was not found in matrix and
is thus not prime) or 1.

After inverting this binary vector it can be used to select all
prime numbers from the initial vector [2, 3, ..., n].

All of this is accomplished by the following lang5-program:

28/40 Prof. Dr. Bernd Ulmann 27-OCT-2011

List of primes 5. More complex examples

Example 10 – list of primes
primes.5

1 : prime_list
2 1 - iota 2 + dup dup dup ’* outer swap in not select
3 ;
4

5 100 prime_list .
primes.5

This program yields the following output:

[2 3 5 7 11 13 17 19 23 29 31 37 41
43 47 53 59 61 67 71 73 79 83 89 97]

29/40 Prof. Dr. Bernd Ulmann 27-OCT-2011

ASCII plotting 5. More complex examples

The following example shows how functions can be plotted on a
dumb ASCII terminal by employing reshape to generate vectors
consisting of blank characters which are then used for indentation.

To plot a simple sine curve the following code could be used:

Example 11 – ASCII plotting
sine curve.5

1 : print_dot(*)
2 " " 1 compress swap reshape "*\n" append "" join .
3 ;
4

5 21 iota 10 / 3.14159265 * sin 20 * 25 + int
sine curve.5

This yields the following output:

30/40 Prof. Dr. Bernd Ulmann 27-OCT-2011

ASCII plotting 5. More complex examples

lang5> ’sine_curve.5 load

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

31/40 Prof. Dr. Bernd Ulmann 27-OCT-2011

Matrix-Vector-Multiplication 5. More complex examples

Matrix-vector-multiplication is a good example to show operator
overloading in lang5. As an example multiply1 2 3

4 5 6
7 8 9

 by

10
11
12

:

Example 12 – matrix vector multiplication
matrix vector.5

1 lang5> 9 iota 1 + [3 3] reshape ’m dress

2 lang5> 3 iota 10 + ’v dress

3 lang5> .s

4 vvvvvvvvvvvvvvvvvvvv Begin of stack listing vvvvvvvvvvvvvvvvvvvv

5 Stack contents (TOS at bottom):

6 [

7 [1 2 3]

8 [4 5 6]

9 [7 8 9]

10](m)

11 [10 11 12](v)

12 ^^^^^^^^^^^^^^^^^^^^^ End of stack listing ^^^^^^^^^^^^^^^^^^^^^
matrix vector.5

32/40 Prof. Dr. Bernd Ulmann 27-OCT-2011

Matrix-Vector-Multiplication 5. More complex examples

The multiplication operator is overloaded like this:
matrix vector.5

1 # Overload * for matrix-vector-multiplication.
2 : *(m,v)
3 # Calculate the inner sum of a vector:
4 : inner+(*) ’+ reduce ;
5

6 swap strip shape rot strip swap reshape *
7 ’inner+ apply
8 ’v dress
9 ;

matrix vector.5

Applying it to the matrix and vector defined before yields this:
matrix vector.5

1 lang5> * .
2 [68 167 266](v)

matrix vector.5

33/40 Prof. Dr. Bernd Ulmann 27-OCT-2011

Ulam spiral 5. More complex examples

In 1963 Stanis law Marcin Ulam discovered the today so called
Ulam spiral while playing with numbers:

73 79
43 47

71 23
41 7

19 2 11 53
5 3 29

67 17 13
37 31

61 59

Create a spiral out of integer numbers, starting at 1.

Remove all non-prime numbers.

This can be done in lang5 without any explicit loops or variables
like this:

34/40 Prof. Dr. Bernd Ulmann 27-OCT-2011

Ulam spiral 5. More complex examples

ulam.5
1 : ulam_spiral

2 : seq

3 : zip(*,*) 2 compress " " join ;

4 : subsubseq swap 2 2 compress reshape ;

5 : subseq

6 0 pick [0 1] subsubseq 1 pick [1 0] subsubseq

7 2 pick 1 + [0 -1] subsubseq 3 pick 1 + [-1 0] subsubseq

8 5 roll drop append append append

9 ;

10

11 dup 2 reshape 1 compress

12 over iota 2 * 1 + "subseq append" 3 pick reshape zip execute

13 over 2 * [0 1] subsubseq append ’+ spread

14 ;

15 : print_line(*)

16 : rpl(*) dup not if drop "" then ;

17 rpl "\t" join . "\n" .

18 ;

19

20 seq swap 2 * 1 + 2 ** iota 1 + dup prime swap and swap scatter

21 ’print_line apply drop

22 ;

23

24 4 ulam_spiral
ulam.5

35/40 Prof. Dr. Bernd Ulmann 27-OCT-2011

Other examples 5. More complex examples

The lang5-distribution contains a wealth of additional examples
which include the examples shown here. In addition the following
lang5-programs are contained in the kit:

apple.5: Compute a Mandelbrot set (ASCII displayed).

cantor.5: Generate a Cantor set.

cosine.5: Cosine approximation using a MacLaurin series.

gol.5: Conway’s Game-Of-Live implemented in lang5.

perfect.5: Find perfect numbers in an interval.

sort.5: Sorting external data.

36/40 Prof. Dr. Bernd Ulmann 27-OCT-2011

6. Conclusion

Conclusion

37/40 Prof. Dr. Bernd Ulmann 27-OCT-2011

Conclusion 6. Conclusion

lang5 is a powerful tool and can be used for a wide range of
(mostly mathematical) applications, ranging from rapid
prototyping to ad hoc data analysis, experimental
mathematics and the like.

The interpreter is rather stable – the existing features are
extremely unlikely to change (although new features will be
added).

If you are interested in using or even extending the
lang5-interpreter do not hesistate to join the project team at
http://lang5.sf.net or contact the author dirctly at
ulmann@vaxman.de

The author would like to thank Mr. Thomas Kratz who wrote
most of the current incarnation of the lang5-interpreter.

38/40 Prof. Dr. Bernd Ulmann 27-OCT-2011

7. Bibliography

Bibliography

39/40 Prof. Dr. Bernd Ulmann 27-OCT-2011

Bibliography 7. Bibliography

[Adams et al. 09] Jeanne C. Adams, Walter S. Brainerd,
Richard A. Hendrickson, Richard E. Maine, Jeanne T. Martin,
Brian T. Smith, The Fortran 2003 Handbook, Springer, 2009

[Brodie 04] Leo Brodie, Thinking Forth – A Language and
Philosophy for Solving Problems, 2004

[Conklin 07] Edward K. Conklin, Elizabeth D. Rather, Forth
Programmer’s Handbook, FORTH, Inc., 2007

[Giloi 77] Wolfgang K. Giloi, Programmieren in APL,
deGruyter, Berlin, 1977

[Katzan 70] Harry Katzan Jr., APL Programming and
Computer Techniques, Van Nostrand Reinhold Company, 1970

40/40 Prof. Dr. Bernd Ulmann 27-OCT-2011

	Foreword
	Introduction
	Installing lang5
	First steps
	More complex examples
	Conclusion
	Bibliography

