Power Management on OpenVMS

Clarete Riana OpenVMS Engineering

1 ©2010 Hewlett-Packard Development Company, L.P

Business Challenges of Today

HP strategy for power management

Processor power saving

Power Monitoring and control

Power saving toolbox

OpenVMS and power management

Q & A

Business challenges of Today

Rising consumption of energy

- Cost of energy is rising
- Compute density is increasing
- Systems require more energy to power and cool
- Costs more to cool a server than to power it~

Powering IT Cooling IT

Business challenges of Today

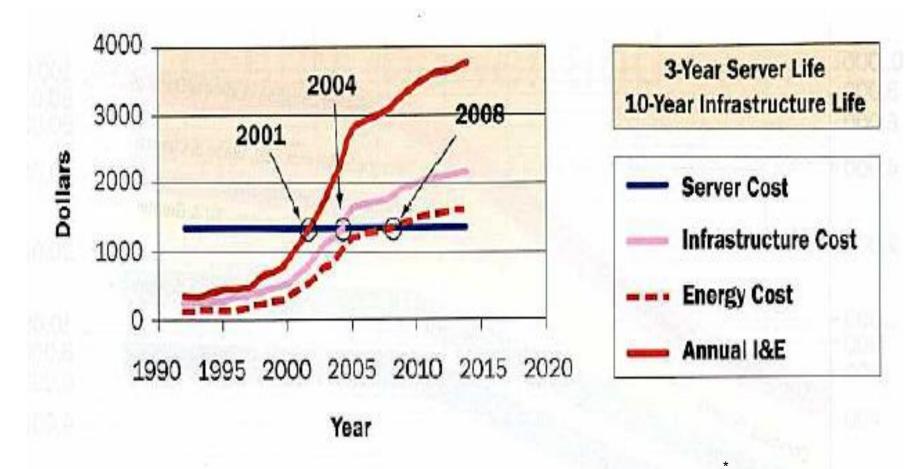
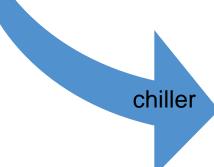


Figure 3. Annual Amortized Costs in the Data Center for a 1U server.


HP Delivering a holistic Energy Efficient Solution

cooling cost savings w/Mapping

Optimizing from chip to chiller

chip

Energy Saving Solutions from the Server **Chip** to the Data Center Air **Chillers** and everything in-between

©2010 Hewlett-Packard Development Company, L.P.

5

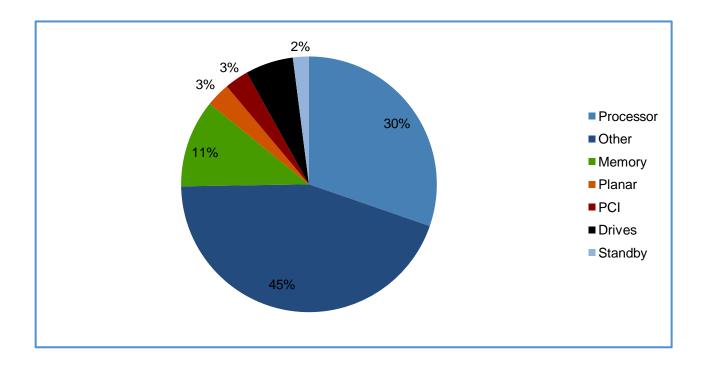
HP Delivering a holistic Energy Efficient Solution

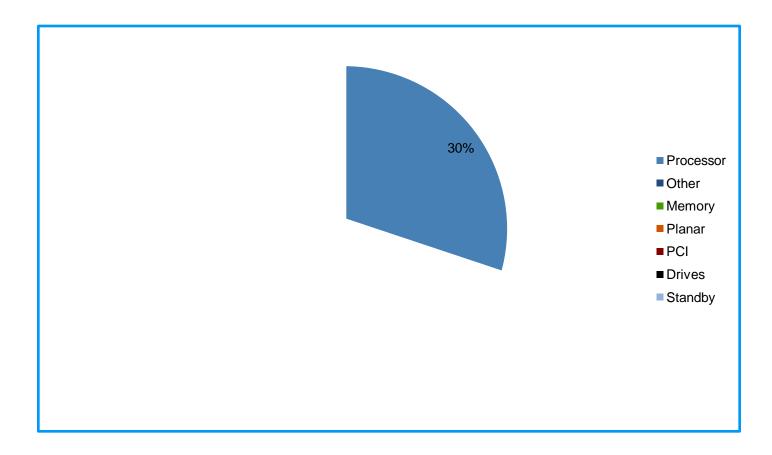
Optimizing from chip to chiller

chip

Energy Saving Solutions from the Server **Chip** to the Data Center Air **Chillers** and everything in-between

HP Dynamic Smart Cooling: up to 45% cooling cost savings w/Mapping




Power Utilization

- Data Center Power Utilization
- 50% for air-conditioning and power supply

This talk covers...

Power Monitoring

- Done autonomously by platform
- No support from OS required
- Available on many recent platforms
- Available via text, web

Power Monitoring via iLO Text Interface

Serial line - HyperTerminal		
File Edit View Call Transfer Help		
🗅 🗃 🚳 🧏 💷 🍯		
[baxter-m] MP:CM> ps PS For System Processor S System Power state: On System Power usage: 54 Temperature : No	6 Watts	
Over Temperature proto Power supplies	ection: Enabled State	
Power Supply 0 Power Supply 1 Fans	Normal Not Installed State	
System Fan 1 System Fan 2 System Fan 3 [baxter-m] MP:CM> _	Normal Normal Normal Normal	
onnected 0:25:28 ANSIW 96	00.8-N-1 SCROLL CAPS NUM Capture Print.echo	

Power Monitoring via iLO Web Interface

Power saving toolbox

- –What does the OS have available to save power on Integrity Platforms (right now)?
 - C-states
 - P-states

Power Saving Toolbox

-C-states

- Idle states; processor can't do work while saving power
- C0 is normal "run" state
- •C1 is "stop processor but keep everything coherent"
- •On Itanium, C1 is entered with PAL_HALT_LIGHT
- •Exit C1 via an interrupt
- Available on all VMS-supported I64 processors

-Power reduction varies with processor

Increases interrupt latency since CPU must "turn back on"

Power Saving Toolbox

- P-states
 - Power/performance states: used when processor is active
 - P0 is the highest performance (and probably highest power)
 - Pn uses less power (and probably has lower performance) the higher 'n' goes. Nmax varies with processor
 - •Only available on some variants of recent processors (starting with 9100)
 - Power/performance tradeoff varies with processor

iLO Commands

Static High Performance

• Don't try to save any power.

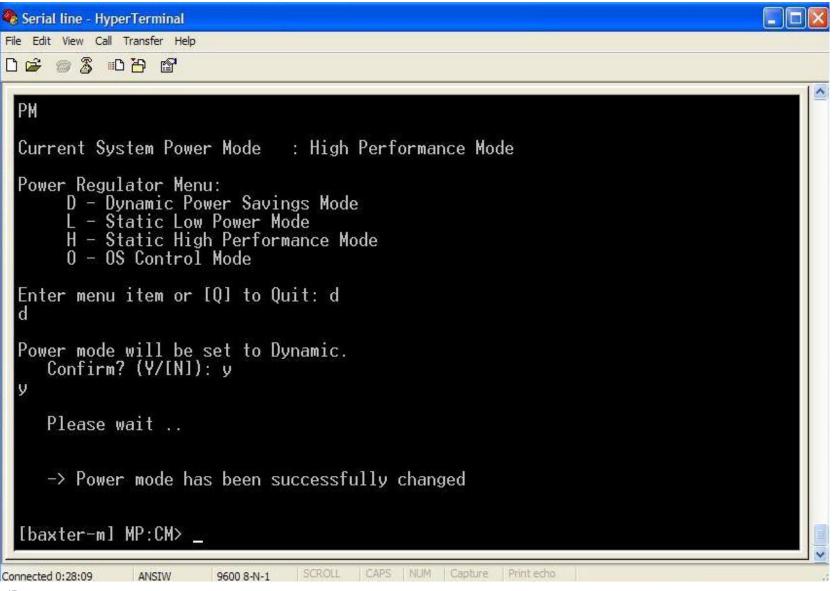
Static Low Power

• Save power at the expense of performance

Dynamic (or efficiency)

 Use OS-defined scheme to make a reasonable compromise between power savings and performance

OS Control


Use OS-defined interface to control power/performance decisions

Power Control or Management

- Different controls and interfaces available in different platforms
- Interface available via iLO text, iLO web, or OS-specific.

Power Management – Serial Line

¹⁷ ©2010 Hewlett-Packard Development Company, L.P.

Power Management – iLO Web Interface

Integrated Lights-C	ut 2 Advanced	7	Current User : Admin iLO Hostname: baxter-m <u>Sign Out</u>
	Virtual Devices Administration Help Power Regulator Power Regulator Mode: C Enable Dynami C Enable Static Le	igh Performance Mode trol Mode	

What has VMS done?

V8.2-1and V8.3

- C1 state when we predict CPU will be idling frequently
- Controlled by SYSGEN parameter CPU_POWER_MGMT and CPU_POWER_THRSH
- Default: Turned on
- Processors: All supported (different results)

V8.3-1H1

• Same algorithm available, but default is off

V8.4

• Use of p-states, Improved algorithm, default is on

What has VMS done in V8.4?

- -Stopped (and iCAP) CPUs will go into C1 state
- -When supported, iLO/IPM controls take precedence
- -If not supported, VMS falls back to "OS Control"

Reminder: iLO Commands

Static High Performance

• Don't try to save any power.

Static Low Power

• Save power at the expense of performance

Dynamic (or efficiency)

 Use OS-defined scheme to make a reasonable compromise between power savings and performance

OS Control

Use OS-defined interface to control power/performance decisions

High Performance

- -No C1 state in idle; just loop in P0/C0
- -Never use any p-state other than P0
- -In other words, just like V8.3-1H1's default

Low Power

- -All CPUs run in Pn state (where n is the lowest power available)
- -Always use C1 in idle

Dynamic/Efficiency

- -Non-idle CPUs will be in P0 state
- Idle CPUs will choose C1 state using a new algorithm (by default)

OS Control

- Sysgen Parameter CPU_POWER_MGMT sets the default behavior when you switch the mode to OS_CONTROL
 - 0 Just like high performance mode
 - 1 Just like low power mode
 - •2 Just like dynamic mode
- Parameter is dynamic. If you change it while in OS_CONTROL mode, power use changes

OS Control

- Can use new system service \$POWER_CONTROL
- \$POWER_CONTROL can choose
 - •POWER\$C_HIGH_PERF
 - •POWER\$C_LOW_POWER
 - •POWER\$C_EFFICIENCY
- Advantage: You can write a program to use in a batch job run on a schedule, or any other scheme you wish
- -\$POWER_CONTROL is flexible enough for us to add additional features later (no specific plans)
- Returns SS\$_WRONGSTATE if called when not in OS_CONTROL state

OS Control

- -Calling system service also changes the sysgen parameter
 - In other words, via the sysgen parameter, VMS remembers the last value set in OS_CONTROL mode
 - Sounds complex but I think it follows "principle of least surprise"

Idle Power Algorithms

- General idea
 - •Go into C1 state in idle if interrupts are "not expected"
 - Algorithm decides when to use C1 state in idle
 - Trigger point determines when we stop using C-states

Idle Power Algorithms

- -Trigger measurement
 - •Old algorithm:
 - -Percentage of time in idle for previous second
 - -Measured by sampling idleness every 1 ms.
 - -Threshold % chosen by CPU_POWER_THRSH
 - C-state decision made each second based on past second
 - •New algorithm:
 - -Number of exits from idle
 - -Count each interrupt and each scheduler exit
 - -If threshold exceded immediately stop C1 use

Idle Power Algorithms

- Resume power savings after threshold exceeded
 - •Old algorithm
 - If percent of idle samples in previous second exceeds required threshold
 - •New algorithm
 - -If no 10-millisecond interval during the previous second exceeded the number-of-idle-exits threshold

New Idle Power Algorithm

-Summary

- •New algorithm uses criteria more relevant to the behavior you want
- New algorithm switches off C-state idle to avoid interrupt latency more quickly
- New algorithm switches back to power savings and higher latency fairly slowly like previous algorithm

Summary

OpenVMS has had power saving mechanisms on Integrity since V8.2-1!

With V8.4— OpenVMS takes part in HP's common power saving program Power saving has better interrupt latency than before

Simplest interface via Management Processor web or serial interface-just three choices: High, low, compromise

System service available for more flexibility

Q & A

