MAKLEE

M

software engineering solutions

OpenVMS on BL890c i2 Servers

Guy Peleg President Maklee Engineering guy.peleg@maklee.com

Maklee Engineering

- Consulting firm operating all over the world.
 - Team of "Top Gun" engineers.
 - Former members of various engineering groups at HP.
 - Gold Oracle partner.
- > Specialize in performance tuning of:
 - OpenVMS
 - Oracle (HP-UX, Linux, VMS, Solaris, AIX, Windows)
 - Oracle Rdb
 - Java (HP-UX, Linux, VMS, Solaris, AIX, Windows)
 - Adabas
- Also offers custom engineering services, custom training and on-going support contracts.

Maklee Guarantees <u>doubling</u> the performance of your Oracle database or our service is provided free of charge !

and....we speak German !!

http://www.maklee.com/indexDeutsch.html

MAKLEE

software engineering solutions

Oracle Services / SQI

ORACLE PARTNER

Tuning

For more information: info@maklee.com 1-800-224-4513

Homepage Über uns

Oracle Services/SQL Tuning

English

Maklee verfügt über umfassende Kompetenzen im Bereich Oracle Tuning mit spezialisierter Erfahrung bei der Arbeit am Tuning der anspruchsvollsten Workloads.

Der Vorteil von Maklee

Das Maklee-Team verfügt über ein tiefgreifendes Verständnis sowohl über Oracle als auch die darunter liegenden Betriebssysteme. Wir unterhalten enge Arbeitskontakte mit den Entwicklungsteams der führenden Hersteller von Betriebssystemen und mit den Entwicklungsgruppen der Oracle Corporation. In dem wir das Feedback des Kunden zu jeder Zeit berücksichtigen, erfüllen unsere Lösungen genau die Bedürfnisse des Kunden. Zusätzlich bleibt Maklee kontinuierlich bezüglich der aktuellsten technischen Entwicklungen und Veränderungen auf dem Laufenden.

Oracle Performance Tuning

Oracle Tuning birgt ein unendliches Potential zur Verbesserung der Performance. Die Standardeinstellungen von Oracle sind nicht immer optimal. Das Tuning ist ausschlaggebend, damit man das Beste aus einem System herausholen kann. Unser kreativer Ansatz resultiert in einem herausragenden Maß der Performance-Verbesserung. Kürzlich bei einem Einsatz für eine führende globale Bank konnte das Maklee-Team die Laufzeit einer Abfrage von 90 Minuten auf 4 Sekunden reduzieren – eine 1350-fache Steigerung der Performance konnte wiedergegeben werden. Unsere Spezialisierung beinhaltet das Monitoring und Tuning aller Oracle Datenbanken einschließlich RAC und Oracle Anwendungen, Oracle Instance Tuning und SQL Tuning. Um unsere Erfolgsgewährleistung realisieren zu können, führen wir während des gesamten Tuning-Prozesses Evaluationen durch. Diese Evaluationen berücksichtigen die Parameter des Betriebssystems und der Datenbank, die Execution-Pläne der Key SQL Statements und das Umschreiben der problematischen SOL Statements.

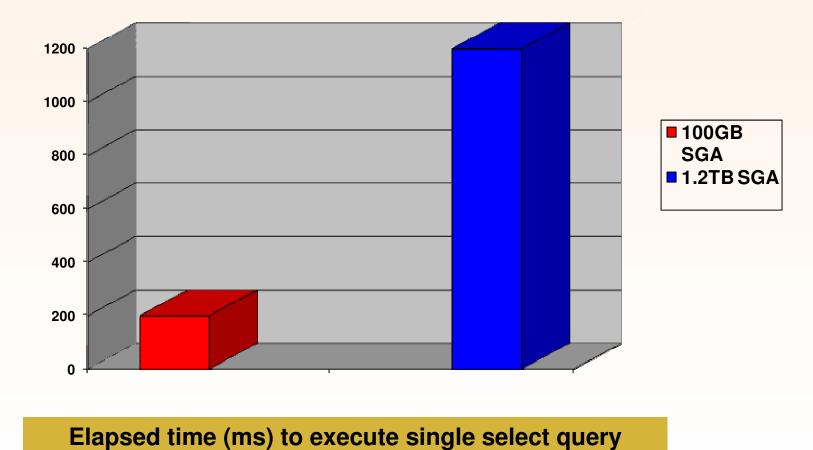
Maklee makes it possible.

Kontakt

<u>info@maklee.com</u> Telefon: 1-800-224-4513 Fax: 1-646-452-9402

Corporate Headquarters:

322W 57th street New York, NY 10019


- Why do we need to spend the next hour discussing OpenVMS on the new BL890c i2 server?
- > What's unique about the new server?

- What happened to VMS is VMS is VMS ?
- > The BL890c i2 was built using a new memory architecture.
 - Understanding the new architecture is essential for achieving optimal performance on the new server.

Extreme Example

- Superdome2 , 2TB RAM, HP-UX 11.31 (update 7)
- Oracle 11gR2

Memory Latency and NUMA

- > The CPU is MUCH faster than physical memory.
 - CPU cycle is ~0.5 nanosecond.
- Memory latency is the amount of time it takes for data to arrive from physical memory into the CPU.
 - Varies from 40 500ns
 - 80-1000 times slower than the CPU
- Most CPUs spend significant amount of time waiting for data to arrive from physical memory.
 - From VMS perspective the CPU looks busy
- On a Non Uniform Memory Access architecture (NUMA) accessing local memory is faster than remote memory.

MAKLEE

NUMA System

Building Block #0	Building Block #1
CPUs 0-7	CPUs 8-15
Memory (interleaved)	Memory (interleaved)
SCHED and SCS spinlock	Disk and Network I/O adapters
Disk and Network I/O adapters	
Building Block #2	Building Block #3
CPUs 16-23	CPUs 24-31
Memory (interleaved)	Memory (interleaved)
LCKMGR and TCPIP spinlock	

Life is not fair !!

OKAY !

BUT....does it really matter??

Oh YES !!!

Memory Latency

- > 2 Cells 4P/8C rx8640 Integrity server.
- In preparation to future growth, a customer purchased 4 processors and spread them across 2 cells.
- 32GB RAM.
- Noticed very high CPU utilization comparing to older integrity box running the same workload.
- Maklee recommended consolidating all of the processors into a single cell, power off the second cell, and by that improve memory latency.

[Cell]				Memory					Use	
Hardware Location	Actual Usage		OK/ Deconf/ Max	(GB) OK/ Decor	ıf	Connect	ted To	Core Cell Capable	On Next Boot	
cab0,cell0 cab0,cell1 cab0,cell2 cab0,cell3	Active Absent	Base *	4/0/8 4/0/8 -	16.0/ 16.0/ - -			ay0,chassis0 ay0,chassis1		yes yes -	0 0 -
Notes: * =	cell h	as no	interlea	ved me	emory.					
[Chassis] Hardware Lo cab0,bay0,c cab0,bay0,c [Partition] Par	hassis hassis	== === 0 Act 1 Act # of	ive ive # of I/0	IO yes yes	To cab(cab(nected),cell0),cell1	0			
Num Status			Chassis				tion Name (f	irst 30 c	hars)	
0 Active		2	2	cab0	,cel10) Partit	tion O			
[Partition Par Num ====== 0			ıd] Iding Enal	oled	Hyper ===== no	thread:	ing Active			

The Golden Rules

- Run your application on the smallest Integrity server that fits your workload.
 - rx6600 and blade BL870c provide outstanding performance, with very low memory latency.
 - On a cellular system, do not turn on extra cells unless you REALLY need it.
- > For workloads that do not fit a small system:

A process should be "close" to it's memory

New Line of Integrity Servers

HP Integrity server blades

Flexible mission-critical server blades combined with the efficiency of HP BladeSystem to accelerate IT effectiveness.

Server blades

HP Integrity BL860c i2 Server Blade

Infrastructure—a versatile and expandable

2 socket blade that is ideal for application tier

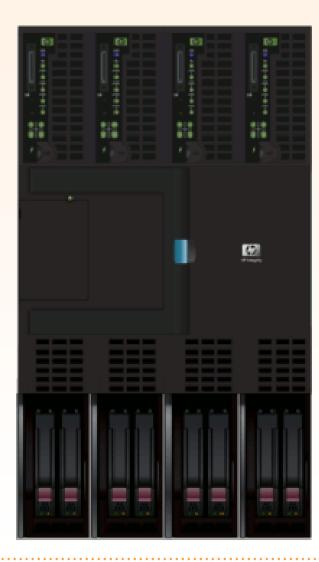
and transaction workloads, database, Java™,

Cost-effective mission-critical Converged

and technical computing applications

HP Integrity BL870c i2 Server Blade

applications such as SAP and Oracle enterprise



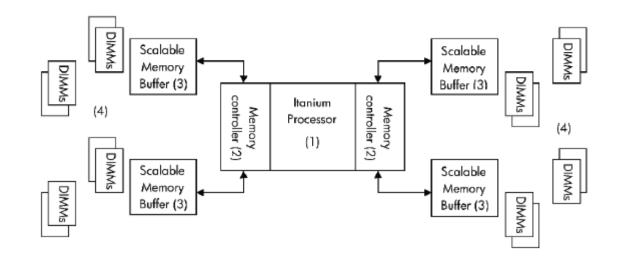
HP Integrity BL890c i2 Server Blade Flexible mission-critical server blades, combined with Kick off the mission-critical revolution with industry's first 8-socket UNIX scale-up server the efficiency of BladeSystem—4-socket blade that is ideal for the database tier of multi-tiered enterprise blade-ideal for larger mission-critical workloads such as enterprise resource planning, customer relationship management, business intelligence, and large shared-memory applications

Processors supported	Intel® Itanium® processor 9300 series 1.73 GHz (quad-core) with 24 MB cache 1.60 GHz (quad-core) with 20 MB cache 1.33 GHz (quad-core) with 16 MB cache 1.60 GHz (dual-core) with 10 MB cache	Intel® Itanium® processor 9300 series 1.73 GHz (quad-core) with 24 MB cache 1.60 GHz (quad-core) with 20 MB cache 1.33 GHz (quad-core) with 16 MB cache	Intel® Itanium® processor 9300 series 1.73 GHz (quad-core) with 24 MB cache 1.60 GHz (quad-core) with 20 MB cache 1.33 GHz (quad-core) with 16 MB cache				
Number of processors	1–2	2-4	4-8				
Maximum number of cores	8	16	32				
Operating systems supported	HP-UX 11i v3 ¹ Microsoft® Windows® server 2008 R2 for Itanium-based systems and OpenVMS v8.4 ²	HP-UX 11i v3 ¹ Microsoft® Windows® server 2008 R2 for Itanium-based systems and OpenVMS v8.4 ²	HP-UX 11i v3 ¹ Microsoft® Windows® server 2008 R2 for Itanium-based systems and OpenVMS v8.4 ²				
Maximum memory	192 GB (24 x 8 GB)	384 GB (48 x 8 GB)	768 GB (96 x 8 GB)				

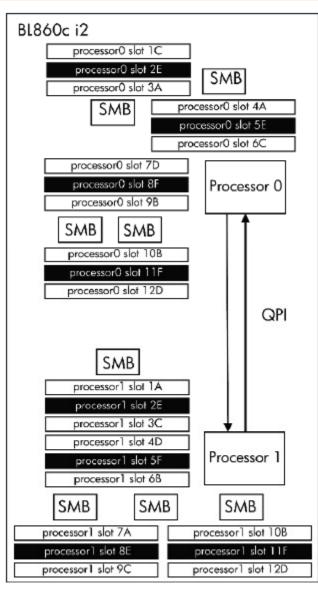
applications

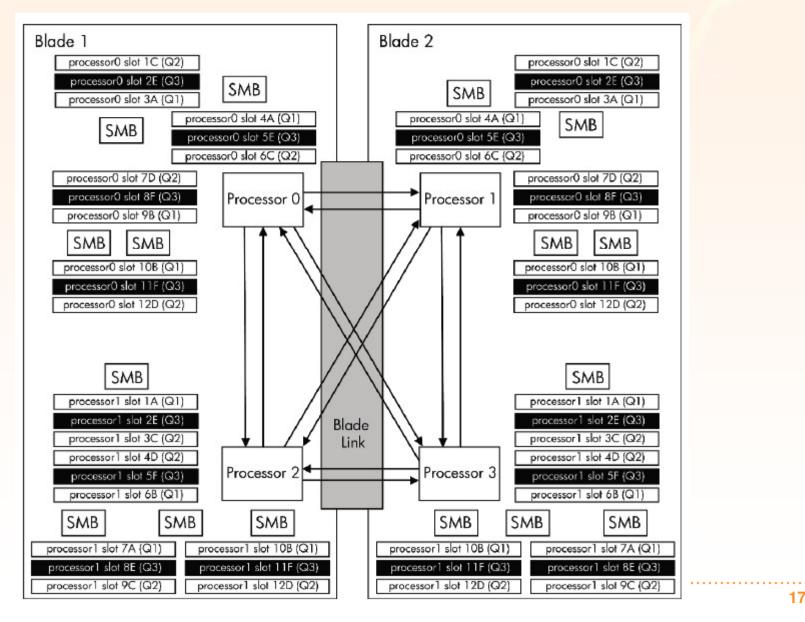
BL890c i2

The Tukwila Processor

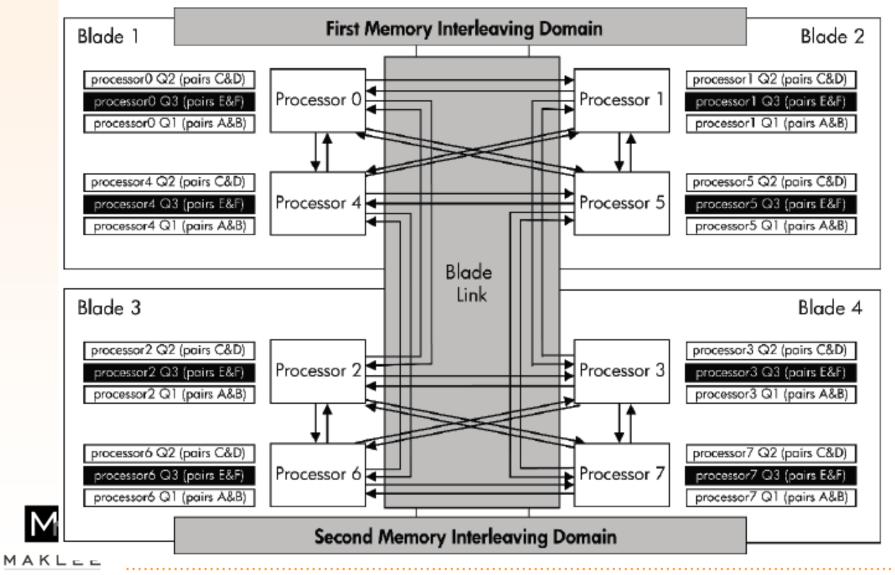

- Tukwila is the code-name for the generation of <u>Intel</u>'s <u>Itanium</u> processor family following <u>Itanium 2</u>, <u>Montecito</u> and Montvale. It was released on 8 February 2010 as the Itanium 9300 Series.
- Quad Core processor, 1.73GHz, 6MB L3 cache per core.
- Socket compatibility between Intel's Xeon and Itanium processors, by introducing a new interconnect called Intel QuickPath Interconnect (QPI).
 - Point-to-Point processor interconnect.
 - Allows one processor module to access memory connected to other processor module.
 - Developed by members of what had been DEC's Alpha group.
 - Replaces the Front Side Bus (FSB) for Xeon and Itanium.
 - First delivered on the Intel Core i7-9xx desktop processors and the X58 chipset.

The memory controller is part of the processor module and not the chipset.

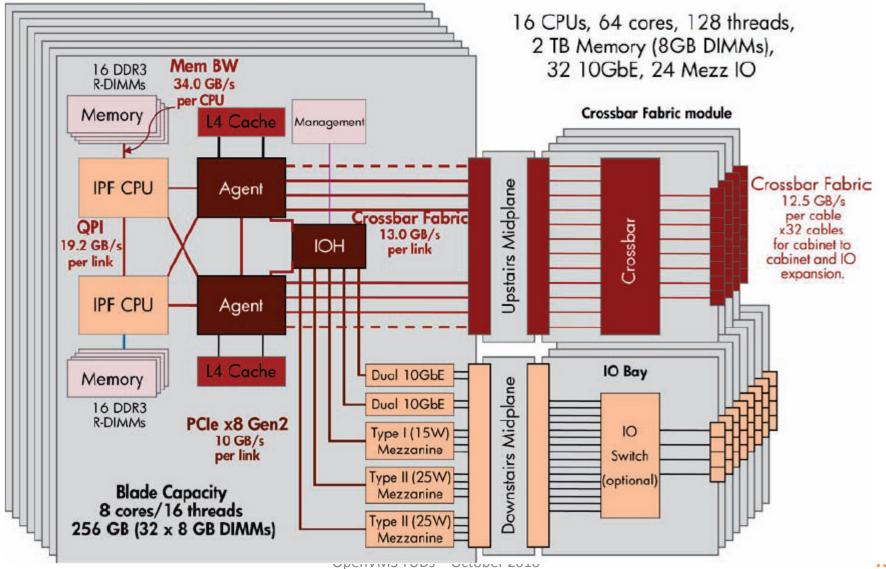

Memory Subsystem Overview



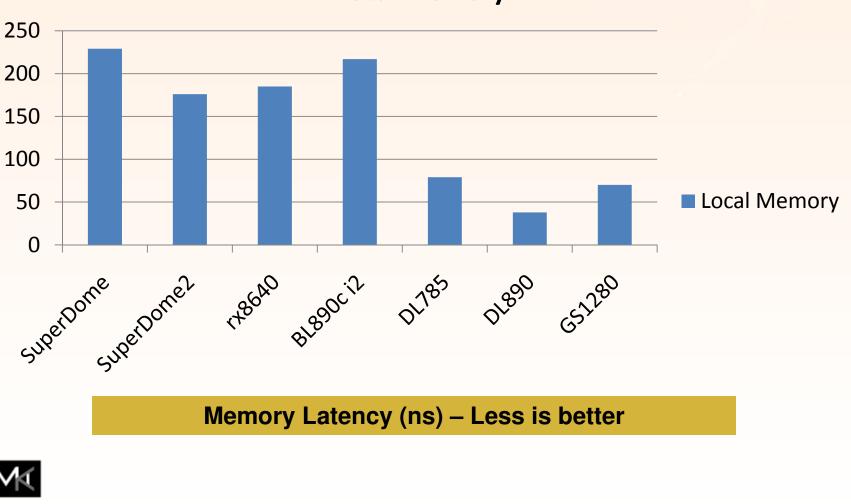
BL860c i2 Overview


BL870c i2 Overview

17


BL890c i2 Overview

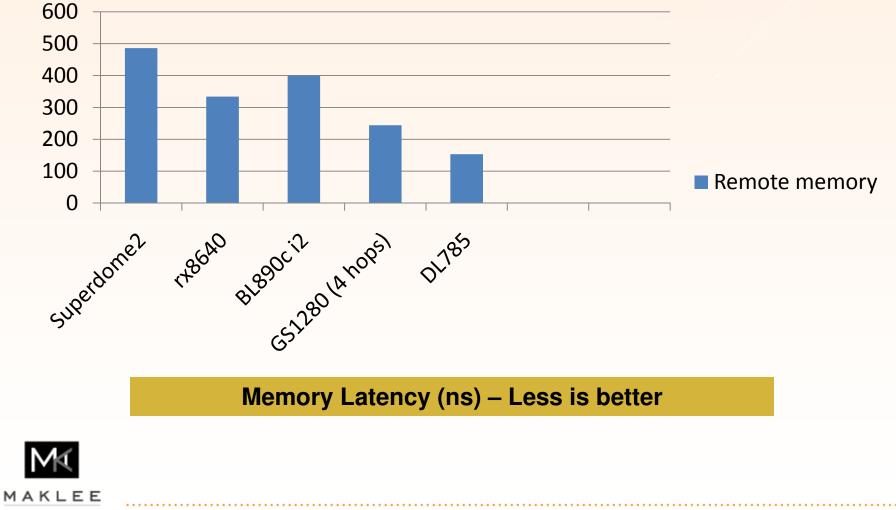
Superdome2 Overview


м

Superdome Blade

Local Memory Latency

MAKLEE


Maklee Confidential

Local Memory

.....

Remote Memory Latency

Remote memory

Latency on the BL890c i2

Memory latency

• Inside interleaving domain

•	Local latency	217 nsec
•	Latency to a 2nd processor in same blade	288 nsec
•	Latency to a processor in 2nd blade	300 nsec

• Across interleaving domains

•	Latency to direct path processor	300 nsec

- Latency to processor in other blade 400 nsec
- Memory latency is not as good as we used to on the Alpha.
- > Applications should be tuned to utilize local memory as much as possible.

Local Vs. Interleaved Memory

- > Challenges of NUMA based servers:
 - Some CPUs may have an advantage acquiring spinlocks.
 - Some CPUs may have an advantage acquiring locks.
 - Inconsistent performance
 - Performance may change based on the CPU a process is scheduled to.
- What could be done to make life a little more fair?
 - Make sure an application is running close to its memory.
 - For example, the dedicated lock manager needs to run close to the lock manager spinlock.
 - Oracle server processes need to run close to the SGA.
 - When the memory footprint of the application is high (shared memory sections than span over more than one domain), consider using Interleaved memory.
 - Until VMS V8.4, VMS only supported interleaved memory.
 - OpenVMS became NUMA aware again (Integrity) starting with OpenVMS V8.4

MEMCONFIG

When migrating to the new BL890c i2, need to decide on memory management policy. Use the EFI MEMCONFIG utility.

Option	Description	Comments
MaxUMA	Maximized Uniform Memory Access, 100% ILM	Memory is interleaved across all processor modules installed in the system. Has the potential to improve bandwidth by distributing memory regions across more DIMMs. When choosing this option one needs to consider the longer latencies associated with 1 or 2 QPI hops.
Mostly UMA	Mostly Uniform Memory Access, 6/8 ILM and 2/8 SLM	6/8 of the available system memory is interleaved across all processor modules installed in the system and 2/8 is interleaved as local memory.
Balanced	Equal allocation of Uniform and Non-Uniform Memory Access, 4/8 ILM and 4/8 SLM	
MostlyNUMA	Mostly Non-Uniform Memory Access, 1/8 ILM and 7/8 SLM	Default memory interleaving selection at boot, optimum for HP-UX.
MostlyNUMA_MBI	Mostly Non-Uniform Memory Access, Minimum Balanced Interleaving, 1 GB ILM and the rest of the memory ILM	Optimum for Windows. Allows for enough shared memory space for the Kernel and any registers which need to be accessed by all processor modules while minimizing memory latency by configuring most of the memory space as SLM.
MaxNUMA	Maximized Non-Uniform Memory Access, 100% SLM	Lowest memory latency configuration.

OpenVMS Implementation

the set Maria	
🕞 app - Citrix XenApp Plugins for Hosted Apps	
🚆 (A) TELNET (thor) - PowerTerm 525	
Datei Bearbeiten Terminal Kommunikation Optionen Skript Hilfe	

View o	of (Cluster	from	svstem	ID	10241	node

• 🖳 🛋 🖻 🛱 🛱 🛱 🗃 🐻 80 [132 💥 🔳 🏢 ?]

	SYSTEMS					
NODE	HW_TYPE	SOFTWARE	STATUS			
	HP BL870c i2 (1.73GHz/6.0MB) HP BL870c (1.59GHz/12.0MB) hp AlphaServer GS1280 7/1300 HP BL870c (1.59GHz/12.0MB) HP rx6600 (1.59GHz/12.0MB) HP rx6600 (1.59GHz/12.0MB)	VMS V8.4 VMS V8.3-1H1 VMS V8.3 VMS V8.3-1H1 VMS V8.3-1H1 VMS V8.3-1H1	MEMBER MEMBER MEMBER MEMBER MEMBER			

2-SEP-2010 15:36:03

-

	Contraction Contraction
	A STATE AND A STATE OF A
😨 app - Citrix XenApp Plugins for Hosted Apps	
🧸 (A) TELNET (thor) - PowerTerm 525	
Datei Bearbeiten Terminal Kommunikation Optionen Skript Hilfe	

٠

System Processor Configuration:

CPU ID	Θ	CPU State	rc,pa,pp,cv,pv,pmv,pl
CPU Type	Quad-Core Itanium (Intel	Itanium 9300	Rev E0)
Halt PC	0000000.0000000	Halt PS	0000000.0000000
Halt code	Bootstrap or Powerfail	Halt Req.	Default, No Action
Slot VA	FFFFFFF.9ADB9000	CPUDB VA	FFFFFFF . 8A1D6000
Package	Θ	Core	Θ
Thread id	Θ	Cothread id	16
FW Usage	00000000.00000000	CPU die	0
ACPI CPU id	00000000.00000000	Serial Num	
LID	00000000.00000000	CFG flags	00000000.00000631 Hardware Initialized Primary Present Reassignable
CPU ID	1	CPU State	rc,pa,pp,cv,pv,pmv,pl
CPU Type	Quad-Core Itanium (Intel	Itanium 9300	Rev E0)
Halt PC	00000000.00000000	Halt PS	00000000.00000000
Halt code	Bootstrap or Powerfail	Halt Req.	Default, No Action
Slot VA	FFFFFFF.9ADBA000	CPUDB VA	FFFFFFF.9B852000
Package	Θ	Core	1
Thread id	Θ	Cothread id	17
FW Usage	00000000.00000100	CPU die	0

Press RETURN for more.

SDA>

RAD_SUPPORT

RAD_SUPPORT

(Alpha only) RAD_SUPPORT enables RAD-aware code to be executed on systems that support Resource Affinity Domains (RADs); for example, AlphaServer GS160 systems. A RAD is a set of hardware components (CPUs, memory, and I/O) with common access characteristics.

Bits are defined in the RAD_SUPPORT parameter as follows:

RAD_SUPPORT (default is 79; bits 0-3 and 6 are set)

3 2 2 2 2 1 1 1 8 7 4 3 6 5 8 7 0 +----+ |00|00| skip|ss|gg|ww|pp|00|00|00|00|0p|df|cr|ae| +----+

Bit 0 (e): Enable - Enables RAD support

Bit 1 (a): Affinity - Enables Soft RAD Affinity (SRA) scheduling Also enables the interpretation of the skip bits, 24-27.

M

Bit 2 (r): Replicate - Enables system-space code replication

MAKLEE

RAD_SUPPORT

Bit 3 (c): Copy	- Enables copy on soft fault
Bit 4 (f): Fault	 Enables special page fault allocation Also enables the interpretation of the allocation bits, 16-23.
Bit 5 (d): Debug	- Reserved to HP
Bit 6 (p): Pool	- Enables per-RAD non-paged pool
Bits 7-15:	- Reserved to HP
Bits 16-23:	- If bit 4 is set, bits 16-23 are interpreted as follows:
Bits 16,17 (pp):	Process = Pagefault on process (non global) pages
Bits 18,19 (ww):	Swapper = Swapper's allocation of pages for processes
Bits 20.21 (gg):	Global = Pagefault on global pages
Bits 22,23 (ss):	System = Pagefault on system space pages

VMS representation MostlyNUMA

\$@sys\$examples:rad

Node: XXXX Version: V8.4

System: HP BL870c i2 (1.73GHz/6.0MB)

RAD	Memory (GB)	CPUs
===	=========	=======================================
0	28.00	0-3,16-19
1	28.00	8-11,24-27
2	28.00	4-7,20-23
3	28.00	12-15,28-31
4	15.99	0-31

SDA SHOW PFN

sda> show pfn/rad

Page RAD summary

RAD	Free pages	Zeroed pages
0000	0	0
0001	233783	65535
0002	3538223	1 *
0003	3395833	3396682
0004	0	0

There are -3247242 additional pages in the free list

* An error occurred scanning this list The count of additional pages given may not be correct SDA>

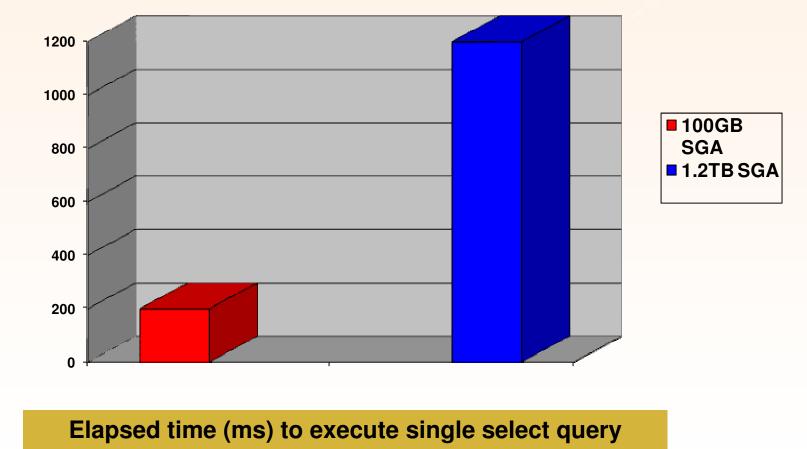
show rad/pxml

Locality #03 (RAD #02)

Size: 00000D8 Address: **FFFFF802.ECF22788** 000001B0 Spread: Average: 000016AA Base RAD: 04 CPU count: 80000008 CPU bitmap: 0000000.00F000F0 Memory range(s): 00000020.00000000:0000026.FFFFFFF 0000001 (as PFNs) 00000000.01000000:00000000.0137FFFF Total memory: 00000007.00000000 (28672MB) RAD preference array: 00000002 0000004 0000003 0000000 0000001

VMS

- Use the SHOW FASTPATH command and move device interrupts to the low numbered CPUs.
- > Move the dedicated lock manager close to the lock manager spin lock.
- Move TCP/IP close to the TCP/IP spinlock.
- Memory sections
 - Use the /RAD qualifier allocating reserved memory from a specific RAD.
 - mc sysman add reserved_section_name /rad=x
 - Use interleaved memory for shared memory sections that span over one RAD.
 - Makes sense also for systems running a single Oracle database
 - /rad=4 pn BL890c i2
 - Use local memory for small memory sections.


Experiment with RAD_SUPPORT

No documentation as to what is happening under the hood, disable if interleaved memory is used, reduce unnecessary overhead in MMG

Now...Can you explain it??

- Superdome2 , 2TB RAM, HP-UX 11.31 (update 7)
- Oracle 11gR2

