
Europe 2009 Technical Update Days
© 2009 Hewlett-Packard Development Company, L.P.
The information contained herein is subject to change without notice

Mandar

Chitale
Office of OpenVMS Customer Programs

Porting OpenVMS
Applications to the
Itanium®

Processor

Family –

Lessons
from Real Life

2

Agenda
•

General considerations

•

Lessons
•

Case Studies

•

Summary
•

Q&A

Sep-092

3

Agenda
•

General considerations

•

Lessons
•

Case Studies

•

Summary
•

Q&A

Sep-093

Migration Benefits
•

30% drop in power and cooling costs

•

40% lower license cost on OpenVMS

•

Reduction in server racks: from 3 to 1

•

50% higher performance with zero downtime

Sep-094

5

Some of Our Goals in Porting OpenVMS
•

To Provide
−An operating system environment
−Development tools
−Documentation

•

Make porting as easy as possible
•

Use our experiences in porting the OS

•

Note: 99% of this talk is about the small
percentage of exceptions

Sep-095

Alpha => I64 changes you might care about
•

Standards and Formats
−Object Language/Image Format (ELF/DWARF)

•

Hardware/Architecture differences
−Atomic Instructions (Load/store conditional)
−No ASMs

to specify Alpha instructions

•

Both
−Register conventions
−Calling Standard

•

Mostly care only for architecture-specific code
•

In many cases we have given architecture-neutral
alternatives

Sep-096

General Development Notes
•

Use the latest versions of the compilers before porting to OpenVMS
IA64

•

Object file and image file sizes are larger on OpenVMS IA64 than

on
OpenVMS Alpha

•

Pay attention to floating point format
−

Integrity supports IEEE only in hardware
−

Alpha supports IEEE and VAX Float in hardware
−

http://h71028.www7.hp.com/ERC/downloads/i64-floating-pt-

wp.pdf

•

Alignment faults are more costly on IA64 than on Alpha
•

Runtime behavior may be different on IA64 if you’re relying on
“undefined”

results
−

For example: COBOL divide by zero
•

Refer respective product’s Release Notes
−

list of fixes, problems and restrictions
Sep-097

http://h71028.www7.hp.com/ERC/downloads/i64-floating-pt-wp.pdf
http://h71028.www7.hp.com/ERC/downloads/i64-floating-pt-wp.pdf

8

Agenda
•

General considerations

•

Lessons
•

Case Studies

•

Summary
•

Q&A

Sep-098

9

Lesson 0 –

It is easy

Porting our 1.5 million lines of code to OpenVMS on Integrity
required no code changes at all.

500,000 lines of Pascal code, only changing 5 lines of code

Compiled approximately 500K lines of code, and had the
core applications running in around 6 hours

Flinders Medical
Center

Sep-099

Lesson 1 –

Latest Versions
•

Build your application on Alpha with the latest compilers
first
−Fortran 77 => Fortran 90
−Ada 83 => Ada 95

• Binary translator will not translate Ada (83 or 95)
−Recode PL/I

• (Note: It can be binary-translated)
− Integrity C++ Compiler is different than C++ on Alpha.

• Watch for mixed pointer sizes
−Binary Translator
−3rd

Party Products
Sep-0910

OpenVMS on Integrity Servers
Compilers
•

C
−

Itanium®

architecture implementation of the OpenVMS Alpha C
compiler

•

C++
−

Based on the same User interface as HP C++
−

This is not a port of C++ on Alpha but it will be able to compile
most of the same source code as HP C++

−

Beware mixed 64-

and 32-bit addresses!

•

COBOL, BASIC, PASCAL, BLISS
−

Itanium architecture implementations of the OpenVMS Alpha
compilers

Sep-0911

OpenVMS on Integrity Servers
Compilers
•

FORTRAN
−

Itanium®

architecture implementation of the OpenVMS Alpha
Fortran 90 compiler

•

Java
−

Itanium architecture implementation of J2SE
•

IMACRO
−

Compiles ported VAX Macro-32 code for Itanium architecture
−

Itanium architecture equivalent of AMACRO
•

ADA
−

GNAT Pro 6.2-2 for OpenVMS on HP Integrity Servers from
AdaCore (Ada-95)

−

The HP Ada-83 compiler is not available on OpenVMS I64

Sep-0912

Compiler Migration at a glance

Porting Integrity
Compiler Version Action Version
C V6.5 Ported V7.3
C++ V6.5 New from Intel V7.3
Fortran 77 Not Ported
Fortran 90 V7.5 Ported V8.2
Cobol V2.8 Ported V2.9
Basic V1.5 Ported V1.7
Pascal V5.9 Ported V6.1
Java V1.4.2 Implemented V1.5
ADA 83 Not Ported
ADA 95 New from ACT V6.2-2
AMacro IMacro created
BLISS V1.01 Ported V1.12
Macro64 Not Ported
IAS N/A Available v7.0U (7.00.4160)
Dibol Ported by Synergex
Acucorp Cobol Ported by Acucorp
PL/I Not Ported

Alpha

Sep-0913

Lesson 2 –

Use Standard way
•

Watch out for architecture-specific code
−Do you really need it?
−Processor/Compiler tech reduce need for assembly?
−C builtins replace ASMs, work on both architectures

(e.g. __CMP_SWAP_LONG not ASM(“LDL_L”) etc.
−Does your code “trick the compiler”

•

E.g. Specify R26 in linkage to get return address in Bliss (use
builtin)

•

E.g. Use AP as a general register in Macro32 (use R12)

− Is there a more standard way? (Read the documentation
for builtins)

Sep-0914

15

Example or a “more standard way”
•

Some applications open and access information in the
image (EXE) or OBJ file. Since the file layout has changed
on I64, code that works on Alpha will not work on I64.

•

Use ANALYZE/IMAGE vs. parsing the EXE file.
•

BTW -

Symbol table files (.STB) can not be placed in object
libraries any more

ANALYZE/IMAGE DCL Symbol that is set Sample Value
/SELECT=ARCHITECTURE ANALYZE$ARCHITECTURE OpenVMS IA64
/SELECT=NAME ANALYZE$NAME "DECC$COMPILER"
/SELECT=IDENTIFICATION=IMAGE ANALYZE$IDENTIFICATION "C T7.1-003"
/SELECT=IDENTIFICATION=LINKER ANALYZE$LINKER_IDENTIFICATION "Linker I02-08"
/SELECT=LINK_TIME ANALYZE$LINK_TIME "6/29/2004 4:26:35 PM"
/SELECT=FILE_TYPE ANALYZE$FILE_TYPE Image
/SELECT=IMAGE_TYPE ANALYZE$IMAGE_TYPE Executable

Sep-0915

Lesson 3 –

Plan the config
•

Plan your final Cluster and Hardware
configuration
−VAX and Integrity only supported together for migration
−Pay attention to MSCP-served disks, for example
−Any specific Hardware being used

•

Read the documentation
−Porting Guides
−Compiler and OS Release notes
− Layered Products
−Calling Standard

Sep-0916

Lesson 4 –

Stay current
•

Stay Current
 Make time to update to most recently released

−

Operating system
−

Compilers
−

Layered products

•

Take the time to read the documentation
−

Release notes (base operating system and

compilers)
−

Porting Guide
−

Calling Standard
−

For drivers, user-defined system services and other privileged code,
read

”HP OpenVMS Guide to Upgrading Privileged-Code
Applications”

Sep-0917

Lesson 5

-

Know Your Code
•

There are not many coding changes required
−Nearly all are uncommon
−But you can waste a lot of time if you do not know your

code well enough to determine if it has some of these
problems

Sep-0918

New Calling standard

•

New Calling Standard
−Available at

http://h71000.www7.hp.com/openvms/whitepapers/i
 ndex.html

−Also in the doc set
− Intel®

calling standard with OpenVMS modifications

•

Register numbers you’re familiar with will change
−All OpenVMS tools “know”

about these changes

−Most user applications are not affected
−User written code “knowing”

about the Alpha calling

standard may have to change

Sep-0919

http://h71000.www7.hp.com/openvms/whitepapers/index.html
http://h71000.www7.hp.com/openvms/whitepapers/index.html

Floating point data

•

Floating point data types
− Itanium®

architecture supports IEEE float only

−All compilers that currently support F, D, G, S, T, and X
(S and T are native IEEE formats) will continue to do so
on Itanium architecture

− IEEE is the default
−The HP supplied Runtime Libraries have been modified

to add IEEE interfaces where needed
−White Paper with technical details about the differences

between VAX Float and IEEE Float is available at
http://h71000.www7.hp.com/openvms/whitepapers/index.html

Sep-0920

http://h71000.www7.hp.com/openvms/whitepapers/index.html

Architecture specific code

Source Code that May Need to Change
•Architecture Specific code
−All Alpha assembler code must be rewritten

•SYS$GOTO_UNWIND system service must
be replaced by SYS$GOTO_UNWIND_64
−OpenVMS I64 requires a 64-bit invocation context
−SYS$GOTO_UNWIND_64 can be used on Alpha to

maintain common source code

Sep-0921

Conditionalized code
•

Conditionalized code
−

Build command files
• $ if .not. Alpha ! Assumes VAX

−

Application source code
• #ifndef (alpha) // Assumes VAX
•

C asm code
−

More often, the Alpha variant works on I64
•

Be consistent, use a single method to determine the
hardware architecture

•

Don’t default to an architecture, be specific
•

$ if .not. Alpha ! Assumes VAX

The above worked fine until 30-Jun-2003 when OpenVMS I64 V8.0
was released.

•

#ifdef __ia64

Sep-0922

Lesson 6 –

Performance considerations
•

Pay attention to unaligned data

•

Not only slow, but not scalable
•

If you can’t fix the mis-alignment, tell the compiler!

Sep-0923

Performance Considerations –

Alignment
Faults
•

Alignment faults can be up to100 times more expensive on IA64
•

Only affects data accessed through a pointer or a parameter
−

No faults on local, stack based variables
•

Detect alignment faults using:
−

FLT extension in SDA
−

SET BREAK/UNALIGN option in the debugger
−

SYS$EXAMPLES:SET_ALIGN_REPORT.C
−

$ MONITOR ALIGN (I64 only)
−

PCA SET UNALIGNED (C, COBOL, FORTRAN, BASIC, PASCAL)
−

System Services
•

$GET_SYS_ALIGN_FAULT_DATA
•

$INIT_SYS_ALIGN_FAULT_REPORT
•

$PERM_DIS_ALIGN_FAULT_REPORT
•

$PERM_REPORT_ALIGN_FAULT
•

$START_ALIGN_FAULT_REPORT
•

$STOP_ALIGN_FAULT_REPORT
•

$STOP_SYS_ALIGN_FAULT_REPORT

Sep-0924

Alignment Faults –Compiler support
Compiler support
•

Generates fetch/store instructions to avoid
Alignment faults
− Inform compiler on pointer pointing to unaligned data
−__unaligned (C)
−/assume=[no]aligned_objects (C)
− .set_registers unaligned=<Rx> (Macro)
−align(x) (Bliss32/Bliss64)
−aligned(x) (Pascal)

Sep-0925

Alignment Faults –

Compiler support
Compiler support
•

C, C++, Pascal and Fortran automatically insert padding to
naturally align structures (can optionally be disabled)
−

/nomember_align (C&C++)
−

/align=VAX (Pascal)
−

/align=PACKED (Fortran)

•

COBOL does not automatically pad structures
−

This can optionally be enabled but use it carefully because this

will
change the data layout

•

Compilers can insert code to avoid faults for unaligned
data.
−

Small performance degradation, but much better than taking an
alignment fault

−

Just be sure the compiler knows using switches mentioned before

Sep-0926

Alignment Faults –

SDA Extension
•

FLT extension in SDA

$ ANALY/SYS

SDA> FLT ! LISTS VALID COMMANDS

SDA> FLT LOAD

FLT$DEBUG load status = 00000001

SDA> FLT START TRACE

Tracing started...

SDA> ! wait sufficient time to collect meaningful data

SDA> FLT STOP TRACE

SDA> FLT SHOW TRACE [/SUMMARY]

SDA> FLT UNLOAD

FLT$DEBUG unload status = 00000001

Sep-0927

How to fix alignment problems?
•

Pad structures to make them aligned if possible

•

If not possible, much better to have unaligned data
that the compiler knows about

•

Example fix:
−#pragma __nomember_alignment

•

Externs/Pointers: Why are they misaligned?
•

OpenVMS Technical Journal article on alignment:

 http://h71000.www7.hp.com/openvms/journal/
 v9/index.html

Sep-0928

http://h71000.www7.hp.com/openvms/journal/v9/index.html
http://h71000.www7.hp.com/openvms/journal/v9/index.html

Lesson 8 –

Exceptions are costly
•

Consider reducing frequent use of exceptions

•

For SETJMP/LONGJMP use __FAST_SETJMP if
possible
−Disadvantage: No SS$_RESIGNAL calls to handlers

Sep-0929

Performance Considerations –

Exception
Handling
•

Exceptions incur some overhead Alpha

•

Upto 20 times more expensive on Integrity Servers
•

Detect exception handling using:
−

EXC extension in SDA
−

Examine your code
•

look for TRY/CATCH blocks
•

exception handlers
•

POSIX signals

•

If you use setjmp/longjmp you can significantly
improve performance by using the
__FAST_SETJMP or __UNIX_SETJMP macros
− (Note: Handlers not called)

Sep-0930

Exception Handling is Slow
•

Itanium calling standard expects them to be
infrequent

•

Trades off slow execution of exception for fast
setup

•

If you signal on infrequent errors, not a problem
•

If you signal as a normal part of execution, maybe
a problem.

•

OS Example: Search list logicals: Frequent file-
 not-found as normal part of processing!

Sep-0931

Finding Exceptions
•

Debug: SET BREAK/EXCEPTION

•

SDA (may get you more than you want!)

Sep-0932

Exception Handling –

SDA Extension
•

EXC extension in SDA
$ ANALY/SYS

SDA> EXC ! LISTS VALID COMMANDS

SDA>EXC LOAD

EXC$DEBUG load status = 00000001

SDA>EXC START TRACE

Tracing Started…

SDA> ! wait sufficient time to collect meaningful data

SDA>EXC STOP TRACE

Tracing Stopped…

SDA> SET OUTPUT/NOHEAD trace.lis ! dump output to a file

SDA> EXC SHOW TRACE

SDA> EXC UNLOAD

EXC$DEBUG unload status = 00000001

SDA> EXIT

Sep-0933

Exception Handling –

SDA Extension
•

EXC is really for debugging OS exception handling!
•

Search the trace file for interesting information
•

Determine the number of exceptions during the trace
period

$ search trace.lis “begin pcb” /noout/stat

•

See where the handler is being called

$ search trace.lis “About to call handler”

•

See interesting application PC values

$ search trace.lis “pc: 00000000.00”

•

Lots of other useful information in the trace listing

Sep-0934

35

Agenda
•

General considerations

•

Lessons
•

Case Studies

•

Summary
•

Q&A

Sep-0935

Real Life Experiences
•

HP/Intel Developer Forum
−15 events in last several years, 250+ participants, 170+

solutions ported during 2.5 day workshops
•

Large office supply company
−11GB save set; Basic; worked with no change
−Performance seemed poorer until they started using

multiple data disks on the test system

Sep-0936

Real Life Experiences
•

Government Regulatory Office
−No code changes required for payroll system (Cobol, C,

Macro32)
−Built application the first day; ran tests the second day

•

Large Bank
−

4-5Million lines of VAX Basic, plus Macro32 and DCL

−

Third party products (Oracle CDD, CA Job management, IBM
MQseries)

−

Built with no code changes
−

Had some informational Macro32 messages

−

Performance issues -

alignment faults were worked on

Sep-0937

38

Agenda
•

General considerations

•

Lessons
•

Case Studies

•

Summary
•

Q&A

Sep-0938

10 Commandments
1.

Do a complete inventory of all Layered products (HP and 3rd party
software

−

Ensure you know the status of each of these on OpenVMS I64 before
you go too far in your port.

2.

Make sure your application builds cleanly with Latest compilers

and
runs on latest version of Alpha

3.

Check for hardware architecture in source code and DCL command
procedures

4.

Automate regression tests as much as possible
−

Clearly documented manual regression tests where necessary
5.

Document your build procedure / process
6.

Read the Porting Guide and various Release Notes (Really do it!)
7.

Reduce /

Recode / eliminate any Alpha Macro (Macro64
code)

and PL/I . Update any Fortran 77 code to Fortran 90.
8.

Where possible, use IEEE floating point
9.

Compare results between Alpha and Integrity systems. Look at
Alignment faults and exception handling

10.

Sit back and just... Re-compile, Re-Link, and run :-)

Sep-0939

For further Information about
OpenVMS on Integrity Servers
•

General OpenVMS on Integrity Servers

http://h71000.www7.hp.com/openvms/integrity/index.html
•

Layered product rollout schedules

http://h71000.www7.hp.com/openvms/os/swroll/index.html
•

Layered products plans (products that either will not be ported
or are under review)

http://h71000.www7.hp.com/openvms/integrity/openvms_plans.html

•

OpenVMS Partner plans

http://h71000.www7.hp.com/openvms/integrity/partners.html
•

OpenVMS on Integrity Servers Total Cost of Ownership white
paper

http://h71000.www7.hp.com/openvms/whitepapers/index.htm

•

Transition modules
http://h71000.www7.hp.com/openvms/integrity/transition/modules.html

Sep-0940

http://h71000.www7.hp.com/openvms/integrity/index.html
http://h71000.www7.hp.com/openvms/os/swroll/index.html
http://h71000.www7.hp.com/openvms/integrity/openvms_plans.html
http://h71000.www7.hp.com/openvms/integrity/partners.html
http://h71000.www7.hp.com/openvms/whitepapers/index.htm
http://h71000.www7.hp.com/openvms/integrity/transition/modules.html

Questions?

Sep-0941

Thank You

Sep-0942

	Porting OpenVMS Applications to the Itanium® Processor Family – Lessons from Real Life
	Agenda
	Agenda
	Migration Benefits
	Some of Our Goals in Porting OpenVMS
	Alpha => I64 changes you might care about
	General Development Notes
	Agenda
	Lesson 0 – It is easy
	Lesson 1 – Latest Versions
	OpenVMS on Integrity Servers Compilers
	OpenVMS on Integrity Servers Compilers
	Compiler Migration at a glance
	Lesson 2 – Use Standard way
	Example or a “more standard way”
	Lesson 3 – Plan the config
	Lesson 4 – Stay current
	Lesson 5	- Know Your Code
	New Calling standard
	Floating point data
	Architecture specific code
	Conditionalized code
	Lesson 6 – Performance considerations
	Performance Considerations – Alignment Faults
	Alignment Faults –Compiler support
	Alignment Faults – Compiler support
	Alignment Faults – SDA Extension
	How to fix alignment problems?
	Lesson 8 – Exceptions are costly	
	Performance Considerations – Exception Handling
	Exception Handling is Slow
	Finding Exceptions
	Exception Handling – SDA Extension
	Exception Handling – SDA Extension
	Agenda
	Real Life Experiences
	Real Life Experiences
	Agenda
	10 Commandments
	For further Information about �OpenVMS on Integrity Servers
	Slide Number 41
	Slide Number 42

