

software engineering solutions

(Advanced) OpenVMS Performance Tips & Tricks

Guy Peleg President Maklee Engineering guy.peleg@maklee.com

Place Yourself in the Hands of the Experts

Who we are

- What is Maklee?
 - US Based consulting firm operating all over the world.
 - Former members of various engineering groups at HP
- Among our customers are:
 - Verizon Wireless, Eli Lilly, AIG financial group, Volvo, M.O.L. America, ConEd, FDNY, France Telecom, IKEA, Navistar, Private Banks in Europe, Frankfurt Airport, ThyssenKrupp Steel, Tel-Aviv Stock Exchange, Hewlett Packard, Dow Jones Company, Bloomberg, NYSE and more...
- We specialize in:
 - Performance Tuning
 - Oracle & Oracle tuning (official Oracle Partner)
 - Platform migration
 - Custom Engineering

Supported platforms: OpenVMS, HP-UX, Linux, Tru64, Solaris and AIX

MAKLEE

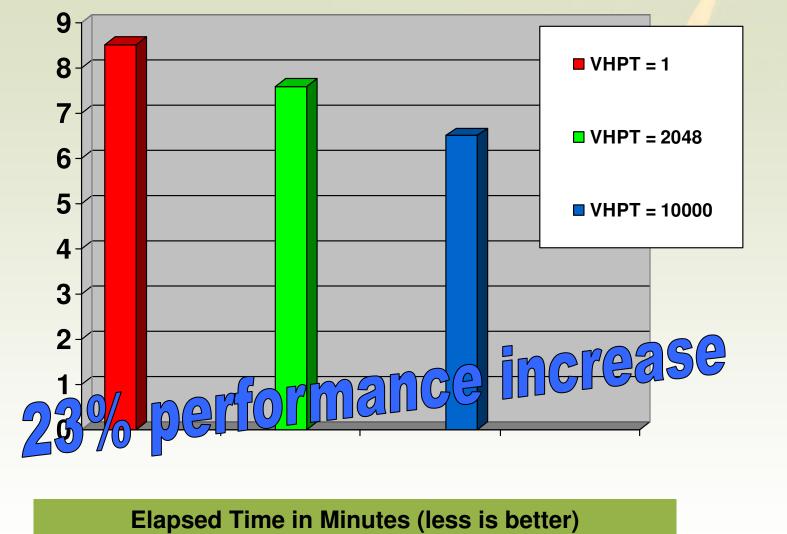
Maklee provides guarantee for success for all projects

Basic Tuning Techniques

- OpenVMS V8.3-1H1
 - VMS831H1I_SYS-V0700
- SET RMS
- QUANTUM
- Resident Images
- Cache vs. No cache
- Fastpath
- Compile /optimize
- Hyper Threads
- PE data compression
- Gigabit Jumbo Frames
- SDA PRF

Quote

 "Keep looking below surface appearances. Don't shrink from doing so just because you might not like what you find."

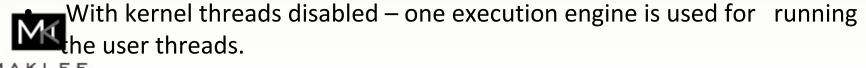


VHPT

- Virtual Address lookup IA64
 - CPU TB cache
 - VHPT
 - OpenVMS performs 3 level address translation walking the page tables.
- The VHPT is sized by SYSGEN parameter VHPT_SIZE.
- Default value of 1 means allocate 32KB per CPU for the VHPT.

Oracle Batch job A

- No good deed goes unpunished.
- High cost associated with invalidating large address space.
 - Oracle server process mapping large SGA
- May result in high MP Synch time during while invalidation is in progress.
- Processes may show up in RWSWP.
- Large VHPT not suitable for applications that frequently map large virtual address space for short period of time.
- In severe situations stop all CPUs on the system until condition clears up.



- Shutting down Oracle database requires 25 minutes vs. 3.

MAKLEE

Multiple Kernel Threads

- When running a threaded application, the threads manager creates one • Kernel thread per CPU.
 - This happens regardless of the number of user threads in the application
- Kernel threads are execution engines for user threads •
- The threads manager schedules user threads to run on an available kernel ۲ thread.
- Overhead is associated with managing multiple Kernel threads. ۲
- A threaded application decides if multiple kernel threads should be ٠ enabled or disabled.

MAKLEE

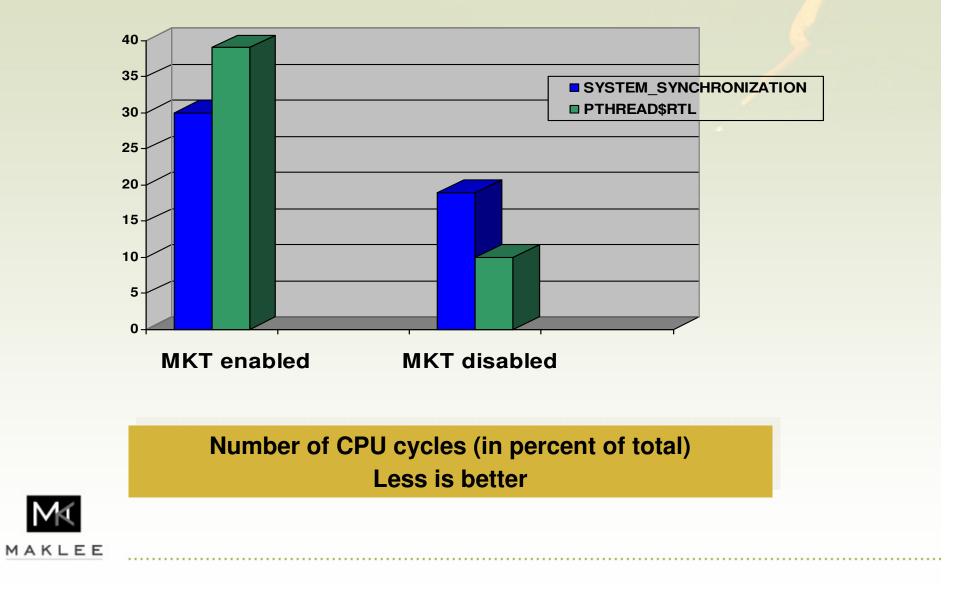
Multiple Kernel Threads

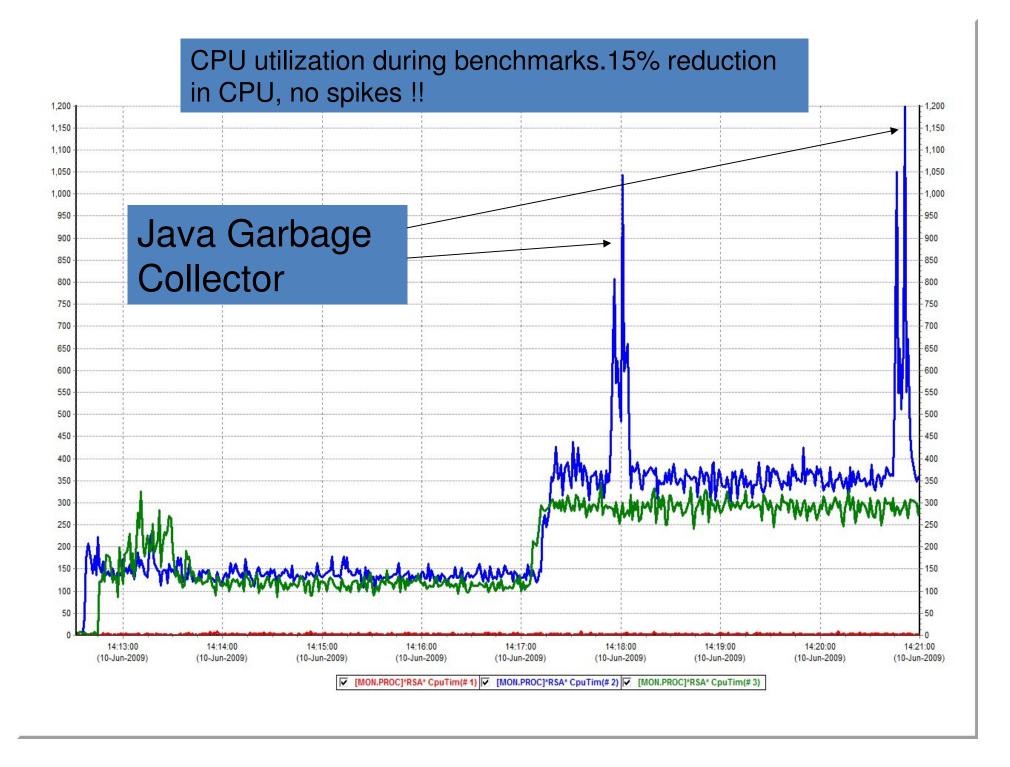
- Evaluated the impact of disabling multiple kernel threads on a Java based benchmark.
- Single threaded Java program performing CPU intensive operation (encryption).
- SD32B, 32 CPUs, OpenVMS V8.3-1H1, Java 5.
- Used SET IMAGE to disable multiple kernel threads.

Encryption Test

• Multiple kernel threads (MKT) enabled

Accounting information:			
Buffered I/O count:	103709	Peak working set siz	e: 891216
Direct I/O count:	7279	Peak virtual size:	2652928
Page faults:	55739	Mounted volumes:	0
Charged CPU time:	0 00:02:36.81	Elapsed time:	0 00:15:54.98


• Multiple kernel threads (MKT) disabled


Accounting information: Peak working set size: Buffered I/O count: 102399 841424 Direct I/O count: 7145 Peak virtual size: 2584064 Page faults: 52623 Mounted volumes: 0 0 00:01:35.80 Charged CPU time: Elapsed time: 0 00:15:18.83

- 39% less CPU time

PC Sampling

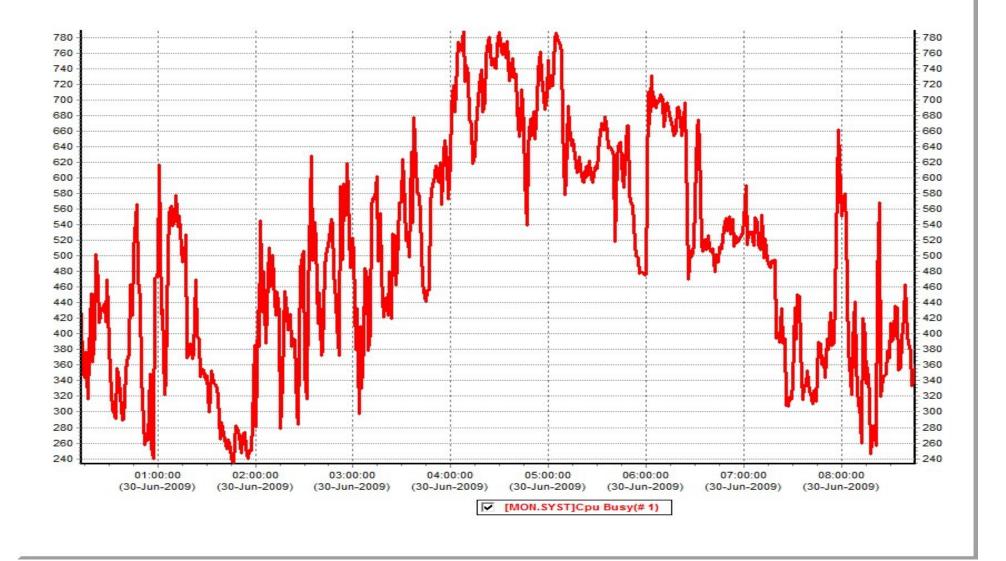
Data Encryption

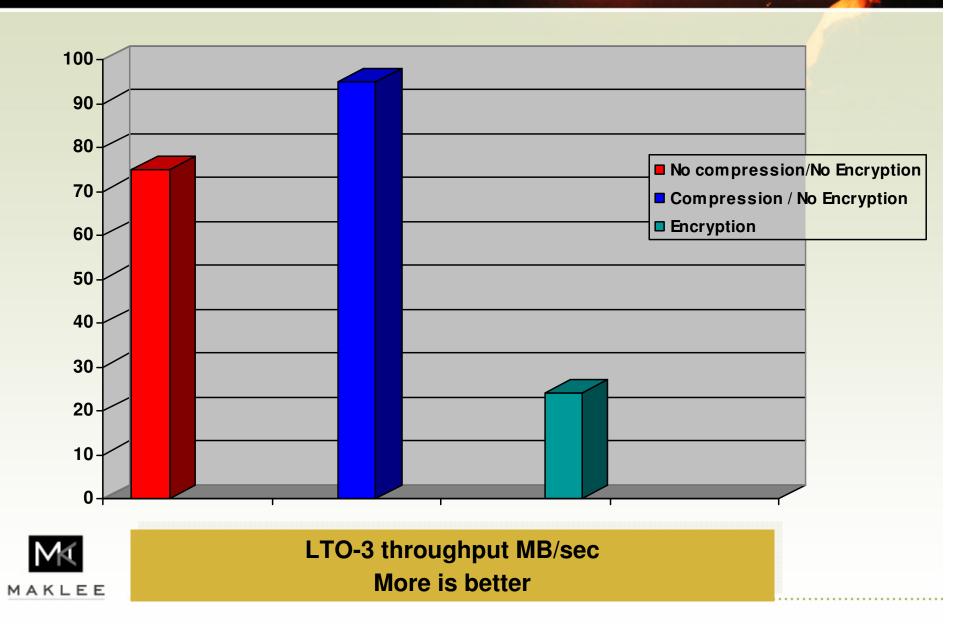
- Business rules and data privacy regulations force more and more organizations to encrypt data stored on tapes.
- Starting with OpenVMS V8.3, OpenVMS can generate encrypted savesets.
 - OpenVMS supports various AES encryption algorithms, and various encryption key sizes.
- OpenVMS also supports the LTO-4 tape drive family.
 - LTO-4 tape drives support hardware encryption.

Which one would perform better?

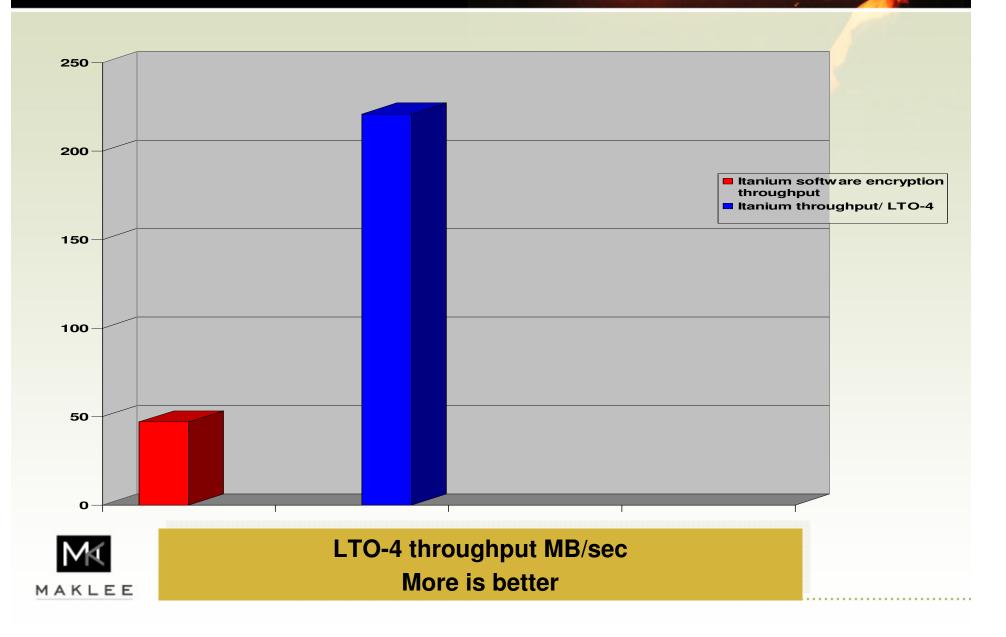
Encryption Benchmark

- Customer benchmark comparing performance of:
 - Alphaserver ES80, 8 CPUs
 - EVA 8100
 - OpenVMS V8.3
 - 2gb fiber connection
 - LTO-3


- 4P/8C BL870c
- EVA 8100
- OpenVMS V8.3-1H1
- 4 gb fiber connection


MAKLEE

VS.


CPU utilization during backup

AlphaServer ES80 Throughput

BL870 Throughput

Data Encryption

- Always enable hardware data compression.
- Hardware encryption outperforms software encryption.
- Stronger encryption keys require more CPU resources.
- Depending on the storage sub system, the /IO_LOAD qualifier may improve performance of backup operations.
- The MSL tape library allows distributing backup across more physical tapes, increasing the throughput of the backup operation.

Mount

- More and more systems use large number of disk volumes.
 - Overcome VMS limitation of 1TB per volume.
- It is not unheard of to encounter systems with 100+ volumes.
- Mounting volumes is slow !!
- Try parallelising the mount operation.
 - SPAWN is the easiest way
 - Writing a program calling \$MOUNT is the fastest way

Mount

- BL870c.
- OpenVMS V8.3-1H1.
- DT cluster spread over 2 sites, 5KM apart.
- Booting the system required 15 minutes.
 - Sequantially mounting 100 shadow sets.
- After changing the startup script to mount all volumes in parallel, the system now boots in 1.5 minutes.

SYS\$IO_PERFORM

- One of VMS's best kept secrets.
- SYS\$IO_PERFORM starts a fast I/O operation.
 - Developed as an alternative to SYS\$QIO.
- Shortcut into the core of the I/O subsystem.

Fast Copy

- Fast I/O is the fastest way to copy data from one disk to another.
- The following shows the results of various tests copying 500MB file from one disk to another:

CONFIG	METHOD	~DIO	CPU	ELAPSED
EVA3000	COPY	16156	02.71	00:12.94
LP9802	BACKUP	31288	00.72	00:14.06
	BACK/BLO=65024	15911	00.35	00:12.49
GS1280	CONVERT	23529	08.97	00:15.37
VMS V8.2	FAST_IO_COPY	7845	00.22	00:07.34

Contact me off-line for a copy of the fast copy program.

C Vs. C++

- The C compiler uses a backend (code generator) provided by HP.
- The C++ compiler uses a backend provided by Intel
 - The C++ compiler knows how to use the Itanium advanced loads and speculative loads.
 - Allows the compiler to hoist fetches out of loops AND move fetches before stores that might impact them
 - Can be huge performance win for certain applications.
- Try compiling CPU intensive C routines with the C++ compiler.
 - We've seen ranges from the C compiler is 20% faster to Intel's compiler is twice as fast.

MAKLEE

TCP/IP I/O post processing

- TCP/IP interrupts are handled by one CPU.
 - SHOW FASTPATH will display the TCP/IP CPU.
- Saturating the TCP/IP CPU will limit the throughput of the application.
- Busy systems with heavy TCP/IP traffic should enable local I/O postprocessing for TCP/IP.
 - I/O post processing will be performed on the CPU issued the I/O vs. the TCP/IP CPU.
 - Off loads the TCP/IP CPU.
- To enable local I/O post-processing for TCPIP
 - sysconfig –r net ovms_unit_status = 2147483648
 - Add to sysconfig.tab

Watch out for the PPE feature in TCP/IP V5.7

MAKLEE

TCP/IP FTP

- Use the following logical names to speed up FTP transfers:
 - TCPIP\$FTP_FILE_ALQ
 - TCPIP\$FTP_FILE_DEQ
 - TCPIP\$FTP_WNDSIZ
- Logical names may be set system wide or only for specific processes.

Oracle RAC

- Oracle RAC startup/shutdown is very slow.
 - Rx7640, OpenVMS V8.3-1H1, Oracle 10gR2 requires 29 minutes to start 10 RAC databases under CRS.
 - CRS startup and shutdown is serialized.
 - Try parallelizing the startup using PIPE
 - Disable automatic startup of all databases
 - PIPE start db1 | start db2 | start db3 ...
 - The system in question now starts all 10 databases in 4.5 minutes.

Data Pump

- Data pump is the fastest way to export/import data.
- Data pump creates multiple threads lowering elapsed time required for export/import to complete.
- Data pump on OpenVMS will gradually slow down as the dump file grows.
- Use the parallel=n feature to guarantee single dump file does not grow beyond 1GB.


```
SDA> prf load
PRF$DEBUG load status = 00000001
SDA> prf start pc/ind=21E004DA
PC Sampling started...
SDA> prf start collect
SDA>
Now run the application:
$ r prime
ELAPSED: 0 00:00:24.16 CPU: 0:00:24.06 BUFIO: 0 DIRIO: 0 FAULTS: 0
$
```

• To look at the collected data:

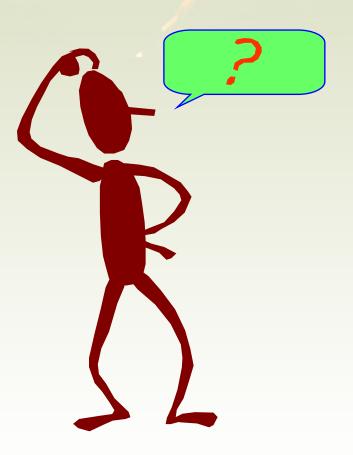
SDA> prf show collect

PRF SHOW COLLECT

Start VA	End VA	Image	Count	Percent
FFFFF802.11F00000	FFFFF802.11F01FFF	PRIME	305113	99.85%
FFFFF802.A100000	FFFFF802.A1015FFF	Kernel Promote VA	1	0.00%
FFFFFFFF . 8000000	FFFFFFFF . 800000FF	SYS\$PUBLIC_VECTORS	2	0.00%
FFFFFFFF.80000100	FFFFFFFF.800111FF	SYS\$BASE_IMAGE	2	0.00%
FFFFFFFF . 80011200	FFFFFFFF.800651FF	SYS\$PLATFORM_SUPPORT	258	0.08%
FFFFFFFF . 800A0000	FFFFFFFF.801DD6FF	SYSTEM_PRIMITIVES	88	0.03%
FFFFFFFF.801DD700	FFFFFFFF.80243BFF	SYSTEM_SYNCHRONIZATION_MIN	9	0.00%
FFFFFFFF . 80254600	FFFFFFFF.8026EFFF	SYS\$EIDRIVER.EXE	5	0.00%
FFFFFFFF . 8026F000	FFFFFFFF.802895FF	SYS\$LAN.EXE	2	0.00%
FFFFFFFF . 80289600	FFFFFFFF.802BA1FF	SYS\$LAN_CSMACD.EXE	2	0.00%
FFFFFFFF . 80440E00	FFFFFFFF.8052B2FF	IO_ROUTINES	1	0.00%
FFFFFFFF . 8053A600	FFFFFFFF.80670DFF	PROCESS_MANAGEMENT	7	0.00%
FFFFFFFF . 80670E00	FFFFFFFF.807759FF	SYS\$VM	11	0.00%
FFFFFFFF.80779500	FFFFFFFF.807C76FF	LOCKING	1	0.00%
FFFFFFFF.807C7700	FFFFFFFF.807F9CFF	MESSAGE_ROUTINES	1	0.00%

PRF SHOW COLLECT

SDA> prf show coll/threash=2


PC	Count	Rate	Symbolization	Module	Offset
FFFFF802.11F00170	63410	20.07%	PRIME+10170	PRIME	00010170
			[GENERATE_PRIME+00000170 / GE	NERATE_PRIME+00000170]	
FFFFF802.11F00190	6138	2.01%	PRIME+10190	PRIME	00010190
			[GENERATE_PRIME+00000190 / GE	NERATE_PRIME+00000190]	
FFFFF802.11F001A0	6761	2.21%	PRIME+101A0	PRIME	000101A0
			[GENERATE_PRIME+000001A0 / GE	NERATE_PRIME+000001A0]	
FFFFF802.11F00200	6296	2.06%	PRIME+10200	PRIME	00010200
			[GENERATE_PRIME+00000200 / GE	NERATE_PRIME+00000200]	
FFFFF802.11F00220	8102	2.65%	PRIME+10220	PRIME	00010220
			[GENERATE_PRIME+00000220 / GE	NERATE_PRIME+00000220]	
FFFFF802.11F00290	6804	2.23%	PRIME+10290	PRIME	00010290

Questions? Comments?

Would never have been possible without the gracious & expert assistance of:

Christian Moser & Norman Lastovica

