
© 2007 Hewlett-Packard Development Company, L.P.
The information contained herein is subject to change without notice

OpenVMS Performance
Update

Gregory Jordan
Hewlett-Packard

2 4 October 2007

Agenda

• System Performance Tests
− Low Level Metrics

− Application Tests

• Performance Differences Between Alpha and
Integrity

• Recent Performance Work in OpenVMS

• Summary

CPU Performance Comparisons

0

100

200

300

400

500

600

R
a
ti

n
g

 (
s
in

g
le

 C
P

U
)

rx3600

1.6Ghz/9MB

rx2620

1.6GHz/4MB

rx2600

1.5GHz/6MB

rx4640

1.3GHz/3MB

ES45 1GHz

GS1280 1.15GHz

More is better
(Small number of computations in test do not

take full advantage of EPIC)

Simple Integer Computations –
single stream

0

100

200

300

400

500

600

700 rx6600

1.6Ghz

rx3600

1.6GHz

GS1280

1.15Ghz

ES45

1.0Ghz

Less is better

Floating Point Computations –
single stream

E
la

p
s
e
d
 T

im
e

The Itanium processors are fast.

• Faster cores

• 128 general purpose and 128 floating point registers

• Large caches compared to Alpha EV7

Memory Bandwidth (small servers)
Computed via memory test program – single
stream

More is better
0

500

1000

1500

2000

2500

3000

3500

M
B

/s
e
c rx4640 1.3GHz/3MB

rx2600 1.5GHz/6MB

rx2620 1.6GHz/4MB

rx3600 1.6GHz/9MB

ES45 1GHz

Memory Bandwidth (large servers)
Computed via memory test program –
single stream

0

500

1000

1500

2000

2500

3000

M
B

/s
e
c

rx7640 1.6Ghz 1 Cell

rx7640 1.6Ghz 2 Cell

rx8640 1.4Ghz 4 Cell

GS1280 1.15GHz (32

CPU)

The latest Integrity Servers have very good memory bandwidth

• Applications which move memory around or heavily use caches or

RAMdisks should perform well

Memory Bandwidth

More is better

Interleaved Memory

• OpenVMS supports Interleaved Memory on the
cell based Integrity Servers

−Each subsequent cache line comes from the next cell

−The Interleaved memory results in consistent performance

• For best performance:

−Systems should have the same amount of physical
memory per cell

−The number of cells should be a power of 2 (2 or 4
cells)

0

50

100

150

200

250

N
a
n

o
s
e
c
o

n
d

s

rx4640 1.3GHz/3MB

rx2600 1.5GHz/6MB

rx2620 1.6GHz/4MB

rx3600 1.6GHz/9MB

ES45 1GHz

Memory Latency (small servers)
Computed via memory test program – single
stream

Less is better

Memory Latency (large servers)
Computed via memory test program –
single stream

0

50

100

150

200

250

300

350

400

N
a
n

o
s
e
c
o

n
d

s

rx7640 1.6Ghz 1 Cell

rx7640 1.6Ghz 2 Cell

rx8640 1.4Ghz 4 Cell

GS1280 1.15GHz (32

CPU)

Memory latency is slower on Integrity when compared to Alpha.

Memory Latency

Less is better

Caches

• Integrity cores have large on chip caches
− 18MB or 24MB per processor

• The cache is split between the two cores so each core has a dedicated
9MB or 12MB of L3 cache

− Load time is 14 cycles – about 9 nanoseconds

• The Alpha EV7 processor has 1.75MB of L3 Cache

− A reference to physical memory brings in a cache line

• Cache line size is 128 bytes on Integrity vs. 64 bytes on Alpha

• The larger cache line size can also result in reduced references to
physical memory on Integrity

− Larger cache can reduce references to physical memory – especially
for applications that share large amounts of read only data

IO Performance

• Both Alpha and Integrity can easily saturate IO
adapters

• The amount of CPU time required per IO tends to
be smaller on Integrity (fibre channel and lan)

• Integrity can benefit from the better memory
bandwidth

Bounded Application Comparisons

ES47 rx3600

ES80 rx6600

• Java

• Secure WebServer

• MySQL

Intensive Java Workload

Concurrent Threads

S
ca

le
d

 T
P

M
 --

 H
IG

H
E

R
 IS

 B
E

T
T

E
R

10
20

30
40

50
60

70
80

90
10

0

Lowest Highest

rx6600(8C x 1.6 GHz) v8.3
ES80(8 x 1.0 GHz) v8.3
rx3600(4C x 1.6 GHz) v8.3
ES47(4 x 1.0 GHz) v8.3

Intensive Local SWS Workload

Number of Concurrent Requesting Processes

S
ca

le
d

 R
es

p
o

n
se

 T
im

e
--

 L
o

w
er

 is
 B

et
te

r!

10
20

30
40

50
60

70
80

90
10

0

Lowest Highest

rx6600(8C x 1.6 GHz) v8.3
ES80(8 x 1.0 GHz) v8.3
rx3600(4C x 1.6 GHz) v8.3
ES47(4 x 1.0 GHz) v8.3

Intensive Local MySQL 4.1.14 Workload

Number of Concurrent Requesting Processes

S
ca

le
d

 T
P

M
 -

- H
ig

h
er

 is
 B

et
te

r

10
20

30
40

50
60

70
80

90
10

0

Lowest Highest

rx6600(8C x 1.6 GHz) v8.3
ES80(8 x 1.0 GHz) v8.3
rx3600(4C x 1.6 GHz) v8.3
ES47(4 x 1.0 GHz) v8.3

Simple schema, 32K rows

Alpha and Integrity Testing

Comparison was between:

ES47 (4CPU 1.0 Ghz, OpenVMS 8.3) and

rx3600 (4C 1.6Ghz, OpenVMS 8.3)

1. First test was using an intense Java workload

2. Second test used concurrent processes

3. Third test was simulating a MySQL workload

Intensive Java Workload

Concurrent Threads

T
ra

n
s

a
c

ti
o

n
s

 -
-

H
ig

h
e

r
is

 b
e

tt
e

r
--

--
--

--
>

L
o

w
e

s
t

H
ig

h
e

s
t

Lowest Highest

rx3600 better by +160%

rx3600(4C x 1.6 GHz) v8.3
ES47(4 x 1.0 GHz) v8.3

Intensive Local MySQL 4.1.14 Workload

Number of Concurrent Requesting Processes

T
h

ro
u

g
h

p
u

t
--

 H
ig

h
e

r
is

 B
e

tt
e

r!

L
o

w
e

st
H

ig
h

e
st

Lowest Highest

rx3600 better
by 972 tpm

rx3600(4C x 1.6 GHz) v8.3
ES45(4 x 1.0 GHz) v8.3

Simple schema, 32K rows

Intensive Local CSWS Workload

Number of Concurrent Requesting Processes

R
e

s
p

o
n

s
e

 T
im

e
 -

-
L

o
w

e
r

is
 B

e
tt

e
r!

F
a

s
te

s
t

S
lo

w
e

s
t

Lowest Highest

rx3600 better by 50%

rx3600(4C x 1.6 GHz) v8.3
ES45(8 x 1.0 GHz) v8.3

Alpha
Integrity

Test 1

Test 3

Test 2

Alpha and Integrity Testing

Comparison was between:

ES80 (8CPU 1.3Ghz, OpenVMS 8.3) and

rx6600 (8C 1.6Ghz, OpenVMS 8.3)

1. First test was using an intense Java workload

2. Second test used concurrent processes

3. Third test was simulating a MySQL workload

Alpha
Integrity

Intensive Java Workload

Concurrent Threads

T
ra

n
s

a
c

ti
o

n
s

 -
-

H
ig

h
e

r
is

 b
e

tt
e

r
--

--
--

--
>

L
o

w
e

s
t

H
ig

h
e

s
t

Lowest Highest

rx6600 is better by 2.3X

rx6600(8C x 1.6 GHz) v8.3
ES80(8 x 1.3 GHz) v8.3

Intensive Local MySQL 4.1.14 Workload

Number of Concurrent Requesting Processes

T
h

ro
u

g
h

p
u

t
--

 H
ig

h
e

r
is

 B
e

tt
e

r!

L
o

w
e

s
t

H
ig

h
e

s
t

Lowest Highest

rx6600 better by 252 tpm

rx6600 better by 628 tpm

rx6600(8C x 1.6 GHz) v8.3
ES80(8 x 1.3 GHz) v8.3

Simple schema, 32K rows

Intensive Local CSWS Workload

Number of Concurrent Requesting Processes

R
e

s
p

o
n

s
e

 T
im

e
 -

-
L

o
w

e
r

is
 B

e
tt

e
r!

F
a

s
te

s
t

S
lo

w
e

s
t

Lowest Highest

rx6600 better by 53%

rx6600(8C x 1.6 GHz) v8.3
ES80(8 x 1.3 GHz) v8.3

Test 1 Test 2

Test 3

Oracle 10gR2 Comparison

Less is better

0

50

100

150

200

250

300

S
e
c
o

n
d

s

S
elect

Insert

U
pdate

D
elete

rx8640 (8C 1.6Ghz)

GS1280 (8CPU 1.15Ghz)

0
10
20
30
40
50
60
70
80
90

100

%
 o

f
G

S
1
2
8
0
 t

im
e

S
elect

Insert

U
pdate

D
elete

The testing was a sequence of 100,000 iterative SQL statements

run multiple times. The first graph is the total elapsed time, the

second shows the same data with the GS1280 normalized to 100.

OpenVMS V8.3

If Performance is Important - Stay Current

• V8.2
− IPF, Fast UCB create/delete, MONITOR, TCPIP, large lock value

blocks

• V8.2-1
− Scaling, alignment fault reductions, $SETSTK_64, Unwind data

binary search

• V8.3
− AST delivery, Scheduling, $SETSTK/$SETSTK_64, Faster

Deadlock Detection, Unit Number Increases, PEDRIVER Data
Compression, RMS Global Buffers in P2 Space, alignment fault
reductions

• V8.3-1H1
− Reduce IOLOCK8 usage by Fibre Channel port driver, reduction

in memory management contention, faster TB Invalidates on IPF

• Some performance work does get back ported…

RMS1 (Ramdisk) OpenVMS Improvements by version

0

10000

20000

30000

40000

50000

60000

70000

2 4
Processes

IO
s

 p
e

r
s

e
c

o
n

d rx6600 1.6Ghz

V8.3-1H1

rx4640 1.5GHz

V8.3

rx4640 1.5GHz

V8.2-1

rx4640 1.5GHz

V8.2

More is better

When Integrity is Slower than Alpha…

• After an application is ported to Integrity – if
performance is disappointing, there are typically 4
reasons

−Alignment Faults

−Exception Handling

−Usage of _setjmp/_longjmp

− Locking code into working set

Alignment Faults

• Rates can be seen with MONITOR ALIGN (V8.3)
on Integrity systems

−100,000 alignment faults per second is a problem

• Fixing these will result in very noticeable performance gains

−10,000 alignment faults per second is potentially a
problem

• On a small system, fixing these would only provide minor
performance improvements

• On a large busy system, this is 10,000 too many

Alignment Faults – Avoid them

0

100

200

300

400

500

600

S
e
c
o

n
d

s
o

f
r
u

n
 t

im
e

Naturally

Aligned

Expected

Misalignment

Alignment

Faults

GS1280

rx4640 1.5

rx4640 1.1

rx8620 1.6

SuperDome 1.5

Exception Handling

• Usage of lib$signal() and sys$unwind is much more
expensive on Integrity

− Finding condition handlers is harder

− Unwinding the stack is also a very compute intensive operation

− Heavy usage of signaling and unwinding will result in performance
issues on Integrity

− In some cases, usage of these mechanisms will occur in various run
time libraries

• There is work in progress to improve the performance of
the calling standard routines

− Significant improvements are expected in a future release

Exception Handling continued

• In some cases, application modifications can be
made to avoid high frequency usage of lib$signal
and sys$unwind

−Several changes were made within OpenVMS to avoid
calling lib$signal

−Sometimes, a status can be returned to the caller as
opposed to signaling

− In other cases, major application changes would be
necessary to avoid signaling an error

• If there are show stopper issues for your application – we want
to know

setjmp/longjmp

• usage of _setjmp and _longjmp is really just another
example of using SYS$UNWIND

−The system uses the calling standard routines to unwind
the stack

• A Fast version _setjmp/_longjmp is available in C
code compiled with /DEFINE=__FAST_SETJMP

−There is a behavioral change with fast setjmp/longjmp

• Established condition handlers will not be called

• In most cases this is not an issue, but due to this behavioral
change, the fast version can not be made the default

Recent/Current Performance Work

• Image Activation Testing

−TB Invalidation Improvements

−Change in XFC TB Invalidates

• Dedicated Lock Manager Improvements

• IOPERFORM improvements

Image Activation Testing

• A customer put together an image activation test
−The test activates 150 sharable images numerous times

using lib$find_image_symbol

−The customer indicated the rx8640 was slower than the
GS1280

−The test was provided to us so we could look in detail at
what was occurring
• We reproduced similar results – the test took 6 seconds on the

rx8640 vs. 5 seconds on GS1280

−Analysis has resulted in a number of performance
enhancements and some tuning suggestions
• Some enhancements are very specific to Integrity systems, others

apply to both Integrity and Alpha

Image Activation Tuning Suggestions

• One observation for the test was that there was heavy
page faulting

• there was a significant amount of demand zero page faults

• there was also a significant amount of free list and modified list page
faults

− Due to in large number of processor registers on IPF, dispatching
exceptions (such as a page fault) is slower on IPF

• To avoid the page faults from the free and modified lists, two changes
were made:

− The processes working set default was raised

− The system parameter WSINC was raised

• The above changes avoided almost all of the free list and modified list
faults

• A potential performance project also being investigated is to process
multiple demand zero pages during a demand zero page fault

Low Level Image Activation Analysis

• Spinlock usage was compared between Alpha
and Integrity
−Several areas stood out in this comparison

• INVALIDATE spinlock hold time

− GS1280 - 6 micro seconds, rx6600 - 48 microseconds

• XFC spinlock hold time when unmapping pages

− GS1280 - 40 microseconds, rx6600 - 110 microseconds

• MMG hold time for paging IO operations

− GS1280 - 6 microseconds, rx6600 - 24 microseconds

−All of the above were fairly frequent operations 1,000s
to 25,000 times per second during the image activation
test

TB Invalidates

• CPUs maintain an on chip cache of Page Table Entries
(PTEs) in Translation Buffer (TB) entries
− The TB entries avoid the need for a CPU to access the page tables

to find the PTE which contains the page state, protection, and PFN

− There are a limited number of TB entries per core

• When changing a PTE, it is necessary to invalidate TB
entries on the processor
− Not doing so can result in a reference to a virtual address using a

stale PTE

− Depending on the VA mapped by the PTE, it may be necessary to
invalidate TB entries on all cores on the system or on a subset of
cores on the system

TB Invalidate Across all CPUs

• Both Alpha and Integrity have instructions to invalidate TB entries on
the current CPU for a specific virtual address

• The current mechanism to invalidate a TB entry on all CPUs is to
provide the virtual address to the other CPUs and get them to execute
the TB invalidate instruction

• The CPU initiating the above operation holds the INVALIDATE spinlock,
sends an interrupt to all CPUs and waits until all other CPUs have
indicated they have the VA to invalidate

− The Integrity cores were slower to respond to the inter-processor interrupts
(especially if the CPUs were idle and in a state to reduce power usage)

Invalidating a TB Entry

Lock INVALIDATE

Store VA in System Cell

IP Interrupt All CPUs

Spin until all CPUs have
seen the VA

See that all bits set

Unlock INVALIDATE

Invalidate TB locally

CPU 0 CPU 1 CPU 2 CPU 3

Read VA

Set seen bit

Invalidate TB

Read VA

Set seen bit

Invalidate TB Read VA

Set seen bit

Invalidate TB

Integrity Global TB Invalidate

• Integrity has an instruction that will invalidate a TB entry
across all cores (ptc.g)

• Usage of the above does not require sending an interrupt
to all cores
− Communication of the invalidate occurs at a much lower level within

the system

− Cores in a low power state do not need to exit this state

• The OpenVMS TB invalidate routines were updated to use
ptc.g for Integrity
− What was taking 24-48 micro seconds on an rx6600 could now be

accomplished in under 1 microsecond.

− Data from larger systems such as a 32 core rx8640 brought the TB
invalidate time down from 100 microseconds to 5 micro seconds

Why didn’t we use the ptc.g instruction in the first place?

XFC Unmapping Pages

• Analysis in to why the XFC spinlock was held so long
showed that within it’s routine to unmap pages – XFC may
need to issue TB invalidates for some number of pages

− With the old TB invalidate mechanism, these operations were costly
on Integrity and thus the very long hold times

• Looking at this routine though, it was determined that it
wasn’t necessary to hold the XFC spinlock while doing the
TB invalidate operations

− This reduced the average hold time of the XFC spinlock and results
in improved scaling

− The average hold time of the XFC spinlock when mapping and
unmapping pages was reduced by 35%

Image Activation Test Results

• With all of these changes – the image activation
test that was taking over 6 seconds on an rx6600
now runs in about 3.4 seconds

• Only the working set tuning and XFC changes
would impact Alpha performance

−The working set tuning had a negligible impact

−The XFC test has not yet been tested, but would also
have no impact on a single stream test

More on Dirty Memory References

• Earlier in the year, an application test was conducted on a large
superdome system

• This was a scaling test. At one point, the number of cores was doubled
with the expectation of obtaining almost double the throughput

− Only a 64% increase in throughput was seen

• PC analysis revealed a large percentage of time was spent updating
various statistics

− a number of these statistics were incremented at very high rates

− With many cores involved, almost every statistic increment would result in a
dirty memory reference

• The code was modified to stop recording statistics

− With statistics turned off, the application obtained a 270% performance
gain

• Maintaining statistics on a per CPU basis is a method to avoid the dirty
reads

IOPERFORM

• A feature within OpenVMS allows third party products to
obtain IO Start and End information

− This can be used to provide IO rates and IO response time
information per device

− This capability was part of the very first OpenVMS releases on the
VAX platform (authored in November 1977 by a well known
engineer)

• The buffers used to save the response time data are
completely unaligned…

− There is a 13 byte header and then 32-48 byte records in the
buffers

− If IOPERFORM is in use on a system with heavy IO activity – the
alignment fault rate can be quite high when VMS writes these
buffers

IOPERFORM (cont)

• Third party products have knowledge of the data layout
− It is thus not possible to align the data

− The OpenVMS routine that records the data has been taught that the
buffers are unaligned and now generates safe code

• IOPERFORM also needed to wake the data collection
process when there was a full buffer
− On systems with high IO rates, we found IOPERFORM attempting to

wake the data collection process over 20,000 per second

• A wake was attempted after every IO completion was recorded if there
existed a full buffer

• Many IO completions were occurring prior to the collection process
waking up and processing the buffers

− The routine has been taught to wake the collection process no more
than 100 times per second.

Summary

• The current Integrity systems perform better than existing
Alpha systems in most cases

− often by substantial amounts and with:

• lower acquisition costs

• reduced floor and rack space requirements

• reduced cooling requirements

• Significant performance improvements continue to be made
to OpenVMS

• Some improvements are Integrity specific, but others apply to Alpha

• If you have performance issues or questions, send mail to:
• OpenVMS_Perf@hp.com

