
1

hhhh

Bruce Ellis
President, BRUDEN-OSSG

Based on presentations by Greg Jordan and
Burns Fisher, HP OpenVMS Engineering,

Hewlett-Packard
Bruce.Ellis@BRUDEN.com

2

rx1620
1u

2P/2C
OpenVMS V8.2,

V8.2-1, V8.3

rx4640
4u

4P/4C or
with MX2 8P/8C
OpenVMS V8.2
V8.2-1, V8.3

rx7620
9u

2 cell (8P/8C)
OpenVMS V8.2-1,

V8.3
rx2620

2u,
2P/2C

OpenVMS V8.2
V8.2-1, V8.3

HP Integrity Servers: OpenVMS Madison9 support

OpenVMS supports the

sx1000 chip set with

only MAD9 processors

on the rx7620, rx8620

and Superdome.

Superdome
Max 4 cell

(16P/16C) partition
OpenVMS V8.2-1,

V8.3

rx8620
17u

4 cell (16P/16C)
OpenVMS V8.2-1,

V8.3

New rx2620
Office Friendly
Conversion kit

3

New Dual-core Processor Integrity Systems

Dual-core Upgrades

Processor upgrade
rx4640 4u, 4P/8C

OpenVMS V8.3

rx7640
9u

2 cell
(8P/16C)

OpenVMS V8.3

System board upgrade
rx2620 2u, 2P/4C

OpenVMS V8.3

HP Integrity Servers: OpenVMS V8.3 Dual-core support

Superdome
Max 4 cell
(16P/32C)
partition

OpenVMS V8.3

rx8640
17u
4 cell

(16P/32C)
OpenVMS V8.3rx3600

4u
2P/4C

OpenVMS V8.3+

rx6600
7u

4P/8C
OpenVMS V8.3+

OpenVMS supports the

sx2000 chip with only

Montecito processors

rx7640, rx8640 and

Superdome.

New Entry Level
System H1 2007

4

CPU Performance Comparisons

0

100

200

300

400

5 00

600

Ra
tin

g
(s

in
gl

e
CP

U
)

rx3600
1 .6Ghz/ 9M B

rx2620
1 .6GHz/ 4M B

rx2600
1 .5GHz/ 6M B

rx4640
1 .3GHz/ 3M B

ES45 1GHz

GS1280
1 .15GHzMore is better

(Small number of computations in test do not
take full advantage of EPIC)

Simple Integer Computations –
single stream

0

200

400

600

800 rx 6600
1.6Ghz

rx 3600
1.6GHz

GS1280
1.15Ghz

ES45
1.0Ghz

Less is better

Floating Point Computations –
single stream

El
ap

se
d

Ti
m

e
The Itanium processors are fast.

• Faster cores
• 128 general purpose and 128 floating point registers
• Large caches compared to Alpha EV7

Various SPEC benchmarks also show the Itanium processors outperforming Alpha processors

5

Memory Latency

0

5 0

100

15 0

200

25 0

La
te

nc
y

(n
s)

rx 4640
1 .3GHz/ 3M B

rx 2600
1 .5GHz/ 6M B

rx 2620
1 .6GHz/ 4M B

rx 3600
1 .6GHz/ 9M B

ES45 1GHz

Memory Latency (small servers)
Computed via memory test
program – single stream

Less is better

0

100

200

300

400

5 00

La
te

nc
y

(n
s)

Superdom e 1 .5GHz
1 Cell (sx1000)

Superdom e 1 .5GHz
2 Cell (sx1000)

Superdom e 1 .5GHz
4 Cell (sx1000)

rx7640 1 .6Ghz 1
Cell

rx7640 1 .6Ghz 2
Cell

rx8640 1 .4Ghz 4
Cell

GS1280-16 1 .15GHz

Memory Latency (large servers)
Computed via memory test program –
single stream

Less is better

Alpha Servers have very good memory latency
• Applications that read small amounts of data from many different
memory locations should perform well

6

Memory Bandwidth (small servers)
Computed via memory test program – Single
Stream

More is better

0
5 00

1000
15 00
2000
25 00
3000
35 00

M
B/

se
c

rx 4640
1 .3GHz/ 3M B

rx 2600
1 .5GHz/ 6M B

rx 2620
1 .6GHz/ 4M B

rx 3600
1 .6GHz/ 9M B

ES45 1GHz

Memory Bandwidth (large servers)
Computed via memory test program –
single stream

0

5 00

1000

15 00

2000

25 00

3000

M
B/

se
c

SuperDom e 1 .5GHz
(sx1000) 1 Cell

SuperDom e 1 .5GHz
(sx1000) 2 Cells

SuperDom e 1 .5GHz
(sx1000) 4 Cells

rx7640 1 .6Ghz 1 Cell

rx7640 1 .6Ghz 2 Cell

rx8640 1 .4Ghz 4 Cell

GS1280 1 .15GHzMore is better

The small Integrity Servers have very good memory bandwidth

• Applications which move memory around or heavily use
caches or RAMdisks should perform well

Memory Bandwidth

7

Interleaving Across Cells

• On cell based platforms, memory can be
configured as:

• cell local
• interleaved (the only OpenVMS supported option)
• a combination of interleaved and cell local

• For the best interleaved performance on
cell based platforms

• The physical memory per cell should be identical
• The number of cells should be a power of 2 (1, 2 or

4)

8

IO Performance

IO appears comparable between Alpha
and Integrity Servers

– Both Integrity and Alpha can
drive IO adapters at comparable
levels

0

20

40

60

80

100

120

1
Bl

oc
k

4
Bl

oc
k

8
Bl

oc
k

16
 B

lo
ck

32
 B

lo
ck

64
 B

lo
ck

12
8

Bl
oc

k
25

6
Bl

oc
k

M
B/

Se
c

ES45
1GHz

rx 4640
1 .5GHz

IO MB/Sec – single process
(QLogic ISP2313) 2Gigabit Fiber Channel Card -
EVA-GL Random Read/Write

More is better

CPU cost per IO is better on Integrity
servers

0
10
20
30
40
50
60
70

1
Bl

oc
k

4
Bl

oc
k

8
Bl

oc
k

1 6
 B

lo
ck

3 2
 B

lo
ck

6 4
 B

lo
ck

1 2
8

Bl
oc

k
2 5

6
Bl

oc
k

us
ec

 C
PU

/I
O ES45

1G Hz

rx 4640
1 .5G Hz

CPU per IO – single process
(QLogic ISP2313) 2Gigabit Fiber Channel
Card - EVA-GL Random Read/Write

Less is better

9

IO Performance

The bandwidth capabilities of 10GB LAN (by the end of 2006) and PCI-Express will only be
available on Integrity

0
1000
2000
3000
4000
5 000
6000
7000
8000

64 51
2

15
18

81
92

/ 9
01

8

M
bi

ts
/s

ec
rx3600
1 .4G hz (10
gigabit)

rx4640
1 .3G Hz (10
gigabit)

rx3600
1 .4G hz (1
gigabit)

rx4640
1 .3G Hz (1
gigabit)

DS25 1G Hz
(1 gigabit)

LAN Transmit/Receive MBytes/Sec

More is better

10

IO Performance

IO appears comparable between Alpha and
Integrity Servers
– Both Integrity and Alpha can drive IO adapters

at comparable levels
– CPU cost per IO is better on Integrity servers
– The bandwidth capabilities of 10GB LAN (by

the end of 2006) and PCI-Express will only be
available on Integrity

11

IO Performance and Caching

Cached IO performance should benefit from
running on Integrity Servers
– Better CPU Speeds
– Better Memory Bandwidth

• Particularly, on smaller servers
• On larger servers, spinlock overhead (MP Synch)

may cause some degradation
– XFC, RAMdisk, etc. may benefit

12

OpenVMS V8.3 provides support for Hyperthreads on
Montecito based Integrity Servers.
– Processor

• A chip or package. 2 cores and 4 hyperthreads per
Processor/Package.

– Core
• An entity within a processor that physically

executes programs.
– Hyperthread

• An entity within a core that logically executes
programs.

Montecito Hyperthreads

13

– CPU
• An OpenVMS abstraction for an entity that

executes programs.
– Thread of execution

• A software concept of what a CPU executes.

Montecito Hyperthreads

14

Both are features of Montecito Itanium chips
and are abstracted as CPUs on OpenVMS.

– Dual Core
• Two CPUs on the same chip.
• Separate

– Cache (Processor cache is divided between cores, i.e.
processors with 18/24MB cache yield 9/12MB per core)

– Processing units
– State

• Shared
– Bus interface

• Simultaneous execution

Hyperthreading vs. Dual Core

15

– Hyperthreads
• A set of execution state in a core.

– User registers
– Control Registers
– Instruction Pointer (IP)
– Etc.

• Shares execution resources with other threads.
• Only one active thread of execution (hyperthread)

at a given time.
• Threads switch based on:

– Block (cache miss)
– Timer

Hyperthreading vs. Dual Core

16

– Hyperthreads
• O/S has no knowledge or control of hyperthread

switches.
• Each hyperthread appears as a CPU to OpenVMS.
• CPUs that share the same core are called

"Cothread CPUs".

Hyperthreading vs. Dual Core

17

Enabling Hyperthreads

$ hthread=="systest:hthreads"
$ hthread show
Hyperthread information for this system:

These processors are capable of hyperthreading
Hyperthreads are currently enabled.
Hyperthreads will be enabled after the next reboot

$
$ hthread on
Hyperthread information for this system:

These processors are capable of hyperthreading
Hyperthreads are currently disabled.
Hyperthreads will be enabled after the next reboot

$

Shell> cpuconfig threads [on/off]

From OpenVMS

From EFI Shell

Must reinitialize after change

18

Viewing Hyperthreads

$ show cpu/br 0,32
System: SKD00, HP rx8640 (1.60GHz/9.0MB)
CPU 0 State: RUN CPUDB: 82054000 Handle: 0000A5F0

Owner: 000004C8 Current: 000004C8 Partition 0 (SKD00)
Cothd: 32

Process: SYSTEM PID: 00000417
CPU 32 State: RUN CPUDB: 824FEB00 Handle: 0000C7F0

Owner: 000004C8 Current: 000004C8 Partition 0 (SKD00)
Cothd: 0

$
$ show cpu/br 7,39
System: SKD00, HP rx8640 (1.60GHz/9.0MB)
CPU 7 State: RUN CPUDB: 824CEC80 Handle: 0000AD60

Owner: 000004C8 Current: 000004C8 Partition 0 (SKD00)
Cothd: 39

CPU 39 State: RUN CPUDB: 8250C580 Handle: 0000CF60
Owner: 000004C8 Current: 000004C8 Partition 0 (SKD00)
Cothd: 7

$

19

With HyperThreads, a "CPU" is something on which OpenVMS can
schedule execution.

• The HyperThread defines a state, a set of registers, etc.
• Only one HyperThread can be using a core at a time.
• When two threads of execution have been scheduled on

"CPUs"/HyperThreads in the same core, they can trade the use of the core,
in a fashion similar to an on core context switch.

General View of HyperThreads

Processor 0 Processor 1 Processor 2 Processor 3

Core 0

Thread/
CPU 0

Thread/
CPU 8

Thread/
CPU 9

Thread/
CPU 10

Thread/
CPU 11

Thread/
CPU 12

Thread/
CPU 13

Thread/
CPU 14

Thread/
CPU 15

Thread/
CPU 2

Thread/
CPU 3

Thread/
CPU 4

Thread/
CPU 5

Thread/
CPU 6

Thread/
CPU 7

Thread/
CPU 1

Core 1 Core 2 Core 3 Core 4 Core 5 Core 6 Core 7

20

Hyperthreading with Stalls vs Hyperthreading with No Stalls

Ai Ai+1 Bi Bi+1A Idle

Serial Execution with Stalls (no Hyperthreading)

Hyperthreading with Stalls

Ai

Bi

Ai+1

Bi+1

A Idle

B Idle

B Idle

Serial Execution with No Stalls (no Hyperthreading)

Ai Ai+1 Bi Bi+1

Hyperthreading with No Stalls

Ai

Bi

Ai+1

Bi+1

21

Two Cores vs Hyperthreading (NoStalls)

Serial Execution with No Stalls on Two Cores

Ai Ai+1

Bi Bi+1

Hyperthreading with No Stalls

Ai

Bi

Ai+1

Bi+1

22

Sample Run on Single Core
Session 1
$ set process/aff/perm/set=31
$ r tc_cf
cycle interval = 0.00000000250000 seconds
cycles 10282355676
time to execute == 25.70588919000000 seconds
Wall clock time: 49143ms
System CPU time: 25620ms
Session 2
$ set process/aff/perm/set=31
$ r tc_cf
cycle interval = 0.00000000250000 seconds
cycles 10353364312
time to execute == 25.88341078000000 seconds
Wall clock time: 49225ms
System CPU time: 25900ms
$

23

Sample Run on Single Core with CoThreads
Session 1
$ set process/aff/perm/set=31
$ r tc_cf
cycle interval = 0.00000000250000 seconds
cycles 14092713701
time to execute == 35.23178425250000 seconds
Wall clock time: 35322ms
System CPU time: 18640ms
$
Session 2
$ set process/aff/perm/set=63
$ run tc_cf
cycle interval = 0.00000000250000 seconds
cycles 14346088453
time to execute == 35.86522113250000 seconds
Wall clock time: 35950ms
System CPU time: 19260ms
$

24

Sample Run on Two Cores
Session 1 (Still affinitized to CPU 31)
$
$ r tc_cf
cycle interval = 0.00000000250000 seconds
cycles 9572697013
time to execute == 23.93174253250000 seconds
Wall clock time: 23997ms
System CPU time: 23920ms
$

Session 2 (Non-Co-Thread CPU)
$ set process/aff/perm/set=32/clear=63
$ stop/cpu 63
%SMP-I-CPUTRN, CPU #63 was removed from the active set.
$
$ r tc_cf
cycle interval = 0.00000000250000 seconds
cycles 9726287048
time to execute == 24.31571762000000 seconds
Wall clock time: 24398ms
System CPU time: 24290ms
$

25

Sample CoThread Tests

alone OFF ON Improvement

4640 (1.44GHz / 9MB) 17.9 54 51.7 4%

8640 (1.6GHz / 9MB) 21.5 63 54.8 13%
Sanddune (1.6GHz / 12MB) 23.9 67.6 52.2 23%

For the threads ON and OFF tests there were 10 copies
of the program run on 4 cores.

26

CoThread Considerations
• General Considerations

– No benefit without more COM/CUR processes than
cores.

– Applications with poor locality (Many Dcache misses)
will benefit

– Applications with good locality may run slightly slower
– Systems with higher memory latency will generally

benefit more than systems with better (lower) latency
– Tuning is critical to minimize system overhead (2%

untuned vs. 13% tuned improvements on rx3600)

27

Areas that are Slower on Integrity
• There are a few areas where the equivalent

operations on Integrity systems are slower
• Alignment Faults
• Exception Handling
• Locking code in the working set (more on this coming

up)
• VAX Floating Point Data Types (due to conversions)
• Various PAL calls (INSQUE,REMQUE)
• Did you compile /NOOPTIMIZE?

28

Integrity Images are Larger
• Integrity Images are typically 3 times as

large
– Can result in more pagefaults and IO
– Require larger GH regions if images are

installed resident
– Requires more disk space for listings and

object files
– Larger quotas may be necessary

29

V8.3 Performance & Scaling Enhancements
– RMS Global Buffers in P2 Space
– “File not found” errors perform much faster on

Integrity
– Reduced alignment faults in the OS and

numerous components
– Installed Resident Images now have code in

S2 space
– Support for shared address data for installed

images

Alpha
Integrity

30

V8.3 Performance & Scaling Enhancements
– Improvements in the code to Probe access to

virtual address
– Improvements for PEDRIVER Block Transfers
– Reduced the time to write an Integrity crash

dump
– Lock Manager improvements for computing

group grant mode (available in remedial kits
too!)

– Eliminate usage of the SCHED spinlock for
PFW and PFC upcalls affects POSIX threads
apps

Alpha
Integrity

31

V8.3 Performance Work
• Alignment Faults

– On going reductions in the operating system and associated
products

• Lock Manager
– Improved Group Grant Mode computation (ECO kits back to

V7.3-2)
• PEDRIVER Block Transfer Improvements

– Changed a TB Invalidate ALL to a TB invalidate single which
occurs for all block transfers

• RMS Globlal Buffers are now in 64-bit address space
– The maximum number of global buffers per file has increased

from 32k to over 2 billion
– See the New Features manual for new commands and mixed

version support

32

V8.3 Performance Work (Continued)
• XQP File Not Found Processing (V8.2-1 tima)

– The design of the XQP was such that all errors were signaled
– As noted previously, exception handling on IA64 is very slow

compared to Alpha
– Signaling a file not found error is a very common operation for

the XQP especially
• This was a big issue for applications such as web servers, etc…

– The XQP was taught to return this status as opposed to signal
the status

• Resident Image Code Region
– The resident image code region is now created in 64-bit space

• AST Queuing and Delivery
– The main-line code path has been streamline

33

V8.3 Performance Work (Continued)
• Poolzone Memory Purges

– Reclaiming memory from pool zones (used by the
XFC and the lock manager) could be slow (ECO kits
back to V7.3-2)

• MONITOR ALIGN (Integrity)
– A new MONITOR class called Align is available with

V8.3
– This will display the rate of alignment faults on the

system
– Alignment fault rates will also be broken down by

mode

34

Performance Change - $LKWSET[_64]
• In OpenVMS V8.2, the behavior of $LKWSET[_64] was

changed
– $LKWSET would lock the entire image if the virtual address

range fell within an image
• The above change is necessary on Integrity platforms since it is

difficult to determine all the parts of the image that must be locked
when locking code sections into the working set

• The above $LKWSET change was also made for Alpha in V8.2
– The $LKWSET change can have a large impact on performance

for code paths that frequently lock and unlock parts of an image
– Several customers were impacted by this after migrating from

OpenVMS V7.3-2 to V8.2

– The Alpha behavior has reverted back to the prior V7.3-2
behavior via ECO kits

35

$LKWSET Recommendations
• For existing Alpha code – no changes should be necessary since

behavior is returning to that of V7.3-2
– For high frequency usage of $LKWSET on Integrity, there are several

options:
• Under an initialization flag or routine – lock the necessary parts of

the image once
– The above will result in the entire image getting locked on Integrity and only the necessary parts

of the image for Alpha for the life of the image

• Under an initialization flag or routine – call lib$lock_image once
• The above will lock the entire image for both Integrity and Alpha. The lib$lock_image

routine is only available as of V8.2

– For code that resides in a very large image
• If possible move the code that needs to be locked into a small

sharable image – doing so will greatly reduce the amount of pages
that need to be locked into the working set

36

RMS1 (Ramdisk) OpenVMS Improvements by version

0

10000

20000

30000

40000

50000

60000

2 4
Processes

IO
s

pe
r

se
co

nd

rx4640
1 .5GHz V8 .3

rx4640
1 .5GHz V8 .2 -
1

rx4640
1 .5GHz V8 .2

More is better

37

Performance
– The OpenVMS operating system performs well on

Integrity servers with just a few caveats
• alignment faults – apps as well as OS need to eliminate them
• exception handling – we are working on significant improvements

– Each OpenVMS release shows performance
improvements over the previous – 8.0, 8.1, 8.2, 8.2-1,
8.3……

– Integrity Servers have substantially lower price/performance
– Most applications should show better performance on Integrity

servers
– If you port an application and are disappointed in performance,

OpenVMS Engineering wants to know!
– Please contact: OpenVMS_Perf@hp.com

Integrity

38

The Performance Curve

Performance

A
pp

lic
at

io
ns

Current Alpha Performance

OpenVMSV8.2
Q1 2005

Today with OpenVMS V8.3 and
Montecito Based Systems – the
curve has shifted – most
applications should perform better
on integrity

39

Questions?

BRUDEN-OSSG thanks you for attending this session.

See us at www.BRUDENOSSG.com for:

•Performance analysis

•(Performance Results Or No Expense)

•Porting assistance

•Special OPS (OpenVMS Programming Services)

http://www.brudenossg.com/

	HP Integrity Servers: OpenVMS V8.3 Dual-core support
	CPU Performance Comparisons
	Memory Latency
	Memory Bandwidth (small servers) �Computed via memory test program – Single Stream
	IO Performance
	IO Performance
	IO Performance
	IO Performance and Caching
	Montecito Hyperthreads
	Montecito Hyperthreads
	Hyperthreading vs. Dual Core
	Hyperthreading vs. Dual Core
	Hyperthreading vs. Dual Core
	Enabling Hyperthreads
	Viewing Hyperthreads
	General View of HyperThreads
	Hyperthreading with Stalls vs Hyperthreading with No Stalls
	Two Cores vs Hyperthreading (NoStalls)
	Sample Run on Single Core
	Sample Run on Single Core with CoThreads
	Sample Run on Two Cores
	Sample CoThread Tests
	CoThread Considerations
	Areas that are Slower on Integrity
	Integrity Images are Larger
	V8.3 Performance & Scaling Enhancements
	V8.3 Performance & Scaling Enhancements
	V8.3 Performance Work
	V8.3 Performance Work (Continued)
	V8.3 Performance Work (Continued)
	Performance Change - $LKWSET[_64]
	$LKWSET Recommendations
	RMS1 (Ramdisk) OpenVMS Improvements by version
	Performance
	The Performance Curve
	Questions?

