Unleash Your Potential New HP Integrity Servers

Ray Turner OpenVMS Ambassador Hewlett Packard April 2010

1 ©2009 HP

Agenda

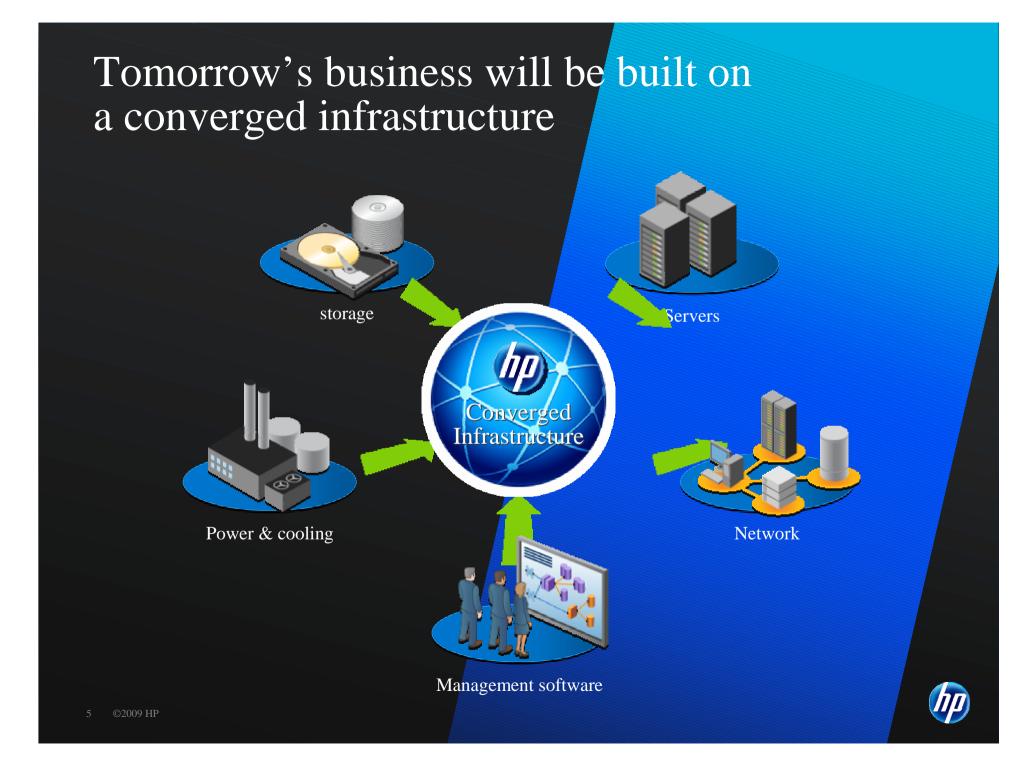
- HP Converged Infrastructure
- HP Next Generation Integrity Servers: Addressing Mission Critical IT Needs
- The new HP Integrity Server Family Product Details
- Summary
- Questions

HP Converged Infrastructure

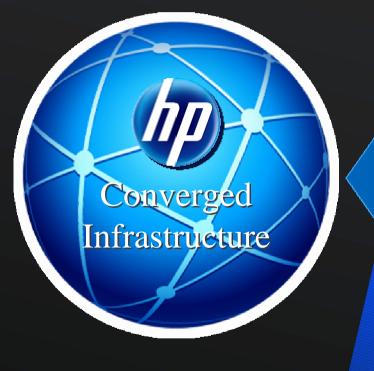
hp

IT sprawl has business at the breaking point

70% captive in operations and maintenance


- Complex and inefficient
- Over-provisioned, underutilized
- Low productivity

Business innovation throttled to 30%


- Long delay to business value
- Unpredictable service levels
- Business agility constrained

4 ©2009 HP HP Research

Requirements to build a converged infrastructure

- Virtualized
- Resilient
- Orchestrated
- Optimized
- Modular

The converged infrastructure architecture

Infrastructure operating environment Enables shared-service management

FlexFabric

Wire-once, dynamic assembly, always predictable

Virtual resource pools

Adaptive compute, memory, storage & network resources

Data center smart grid

Intelligent energy management across systems and facilities

Accelerate your business

Make 70/30 about innovation again with HP Converged Infrastructure

Converged infrastructure

Improved productivity

Utilization infrastructure capacity

Reclaimed facility energy capacity

Accelerate your business

Faster time to business value

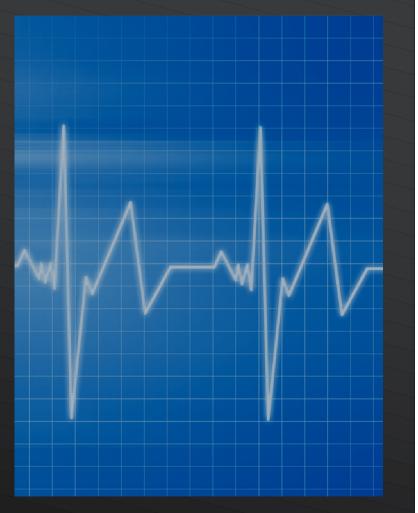
\$

Improve service-levels

Support business transformation

HP Next Generation Integrity Servers

Addressing Mission Critical IT Needs


Mission critical needs are evolving

Today's mission-critical environments require:

- Reliability and predictability for the most challenging workloads
- Flexibility to contain costs while meeting increasingly demanding SLAs

HP delivers with:

- Greater virtualization flexibility
- Simplicity through standardization
- Greener IT
- No compromise on RAS
- Dynamic scalability

Next Generation Integrity Servers

Building on a proven track record of mission-critical leadership

Converged Infrastructure • Resilient • Orchestrated

• Modular

Optimized

• Virtualized

Today's Integrity Solutions

Mission Critical Virtualization with integrated & automated management

Resilient operating environments and high availability software

Utility computing for capacity on demand

Energy-efficient Integrity servers and server blades

> Modular form factors for demanding workloads

Next-Generation **Integrity Servers**

HP Next Generation Integrity Servers

Designed for the next generation of mission-critical needs

Converged design for <u>extreme</u> <u>flexibility</u> to virtualize

Virtualized
Resilient
Orchestrated

Optimized

Modular

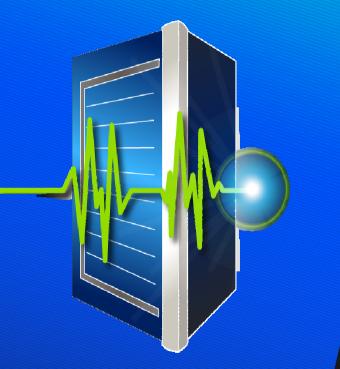
•

Infrastructure

<u>Continued innovation in RAS</u> for the highest level of availability

<u>Simplicity through standardization</u> - commonality throughout the data center

Unparalleled <u>energy efficient</u> <u>design</u> for ultimate utilization


Modular building blocks for dynamic scalability

Next-Generation Integrity Servers

Why Next Generation Integrity Servers for missioncritical computing?

- HP Next Generation Integrity Servers are mission-critical by design, with added simplicity and efficiency.
- By converging Integrity server modularity and BladeSystem modularity, HP redefines what enterprise IT can expect from mission critical computing
- HP is uniquely positioned with IP in servers, storage, networking and management software to address the evolving needs of mission-critical computing.

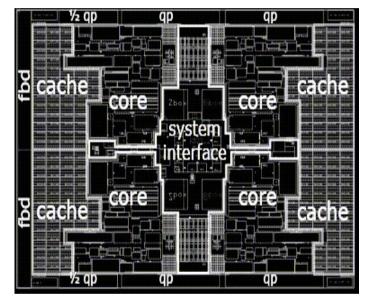
 \checkmark

The new HP Integrity Server family – Product details

Technical Update

Intel[®] Itanium[®] Processor

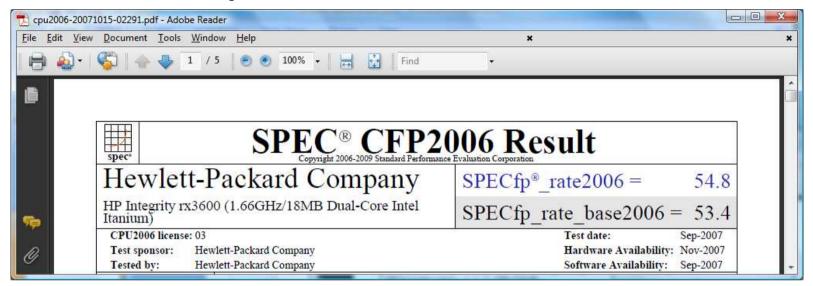
Intel[®] Itanium[®] Platform Roadmap

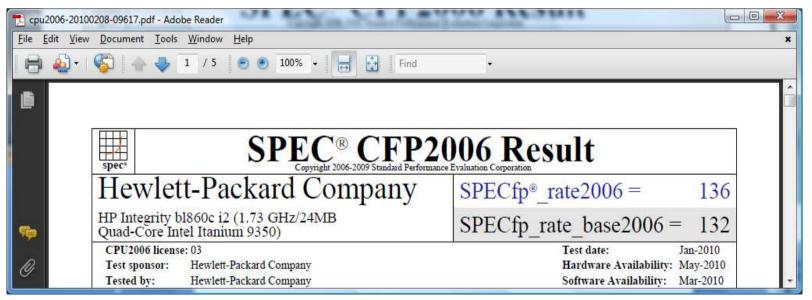

	Processor Generation	Intel® Itanium® Processor 9100 Series	Tukwila	Poulson	Kittson (In Planning)
	Chipset	870/OEM	Во	xboro/OEM	
	New echnologies/ Capabilities	 Dual Core 24MB Shared Cache Hyper-Threading Technology Intel Virtualization Technology Intel Cache Safe Technology Lock-step Data Integrity Technology DBS Power Management Technology 	 Quad Core, 30MB Total Cache, Hyper-Threading Technology Intel QuickPath Interconnect Dual Integrated Memory Controllers, 4 Channels Next Gen IO (PCIe Gen 2) Mainframe-Class RAS Enhanced Virtualization Common Chipset w/ Next Gen Intel® Xeon® Processor MP Voltage Frequency Mgmt Scalable Buffered Memory 	 Advanced Multi-Core Architecture Hyper-Threading Enhancements Instruction-Level Advancements 32nm Process Technology Large On-Die Cache New RAS Features Compatible with Tukwila Platforms Scalable Buffered Memory 	9th Itanium® Product • Compatible with Tukwila Platforms • Scalable Buffered Memory
	Targeted Segments	ntelligence, ERP, HPC,)			
La	Platform aunch Target	2007	2010	Future	Future

Tukwila: New Quad-Core Itanium® Processor Worlds first 2 Billion Transistor Microprocessor

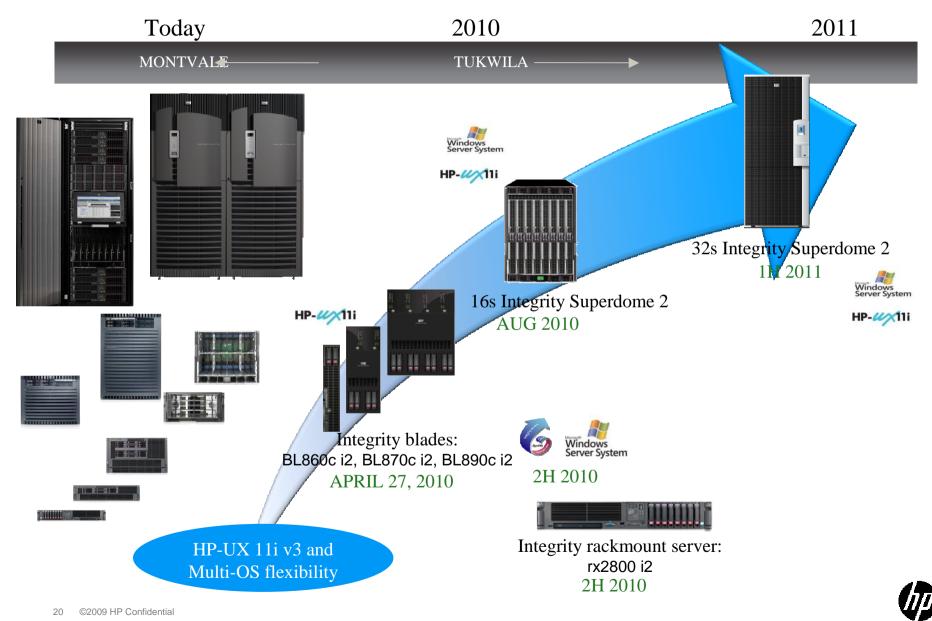
"A 65nm 2-Billion-Transistor Quad-Core Itanium® Processor"

Quad Core w/ Multi-Threading (8T) >2x* performance vs Dual-Core Itanium® Processor 9100 series 30MB on-die cache QuickPath interconnect and dual integrated memory controllers Advanced RAS Energy Efficiency


Tukwila Micrograph


Performance → This is based on comparison between Intel's performance projections (1/15/08) on 4-socket benchmarks (TPC-C, SpecintRate, and SpecfpRate) for Tukwila Vs measurements on Intel Itanium® Processor 9100 Series (Montvale) Hewlett-Packard Company L.P. All Rights Reserved. HP Company Confidential Information subject to change at any time Copyright © Intel Corporation, 2008. All rights reserved. Third-party marks and brands are the property of their respective owners. All products, dates, and figures are preliminary and subject to change without notice.

Streams benchmark


F) 1 2 3	4 5 6) -	FW	8L870c i2 test results, and Power p7 re	sults too! - Me	sage (HT	ML)			
Message (0)										
Image: Constraint of the second definition of the second definiti										
Respond Actions Junk E-mail 😰 Options 🖼 Find OneNote										
This message was sent with High importance. Sent: Mon 29/03/2010 14:40 irom: Mcmaster, Euan o: Mcmaster, Euan ic: Sent: With BL870c i2 test results, and Power p7 results too!										
Benchmark		System	Processor		Sockets	Cores	Me	mory	Result	X Factor per socket
STREAMT	Trind	BL870c	1.6GHz/ Itanium	18MB Dual-Core Intel 2	4	8	- 3	48 GB	5440	9.1
STREAMT	nad	BL870c i2		R) Processor 9350s (1.73 MB)	4	16	3 2	56 GB	49533	
But is it technically correct to compare the above two & conclude 9.1 "X factor per socket" ? Because, if there was a BL860c with 256GB ram, the X factor per core would not be more than 1.6-1.7 If you see Streams triad figures of Superdome 16 core server, it literally doubles with doubling RAM on same 16 core (128GB→256GB→512GB) Benchmark System Processor Sockets Cores Memory Result Per Core Triad Sockets Cores										
STREAM	REAM HP Integ		Dome_4cell	1.6GHz/24MB Dual-Core Inte Itanium 2	1 16	32	256GB	64715	2022	
Triad	HP_Integrity_SuperDome_4cell			1.6GHz/24MB Dual-Core Inte Itanium 2	l 16	32	512GB	128686	4021	

SpecFP benchmark

New HP Integrity Servers

rx2800 i2 Overview

Management

- Integrated Lights Out (iLO 3)
- Integrated VGA console
- iLO 3 Advanced Pack firmware license option
- System Insight Display

I/O subsystem

- 6 'public' PCI-e IO slots :
 - -2 x8 slots
 - -4 x4 slots
- Integrated HP 8 Port SAS host bus adapter
- Integrated 4 Port 1000Base-TX LAN
- 1000Base-T, USB, serial ports

Internal peripherals

- 8 hot-plug SFF SAS 6Gbps HDDs
- DVD-ROM or DVD+RW
- Integrated RAID support

Processors and chipset

- 2 Intel ® Itanium processors -Three SKUs
 - -2 quad-core
 - -1 dual-core

Memory

- 24 PC3-8500 DIMM sockets
- 192 GB capacity with 8GB DIMMs

Form factor

- 2 EIA units (U)/3.5" height
- 20 servers per 42U rack
- Designed for data center and utility closet operation (5–35°C)
- Standalone, pedestal and 'Office Friendly' options

High availability

- Memory double chip spare
- Redundant hot-plug power
- Redundant hot-swappable fans
- Internal SAS RAID
- Processor de-allocation on failure

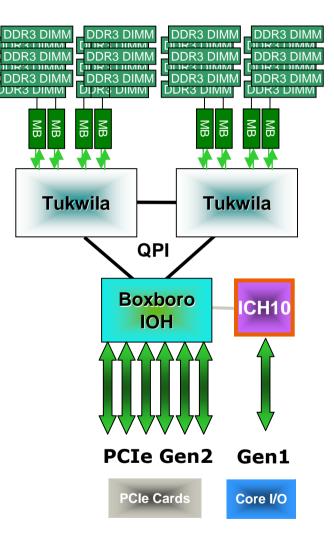
3-year Next day, on-site Warranty

Intel® Itanium® (Tukwila) Platform Overview

Connectivity

- Fully-connected Intel® Quick Path Interconnect (QPI) links
- Boxboro IO Hubs (IOH)

Memory

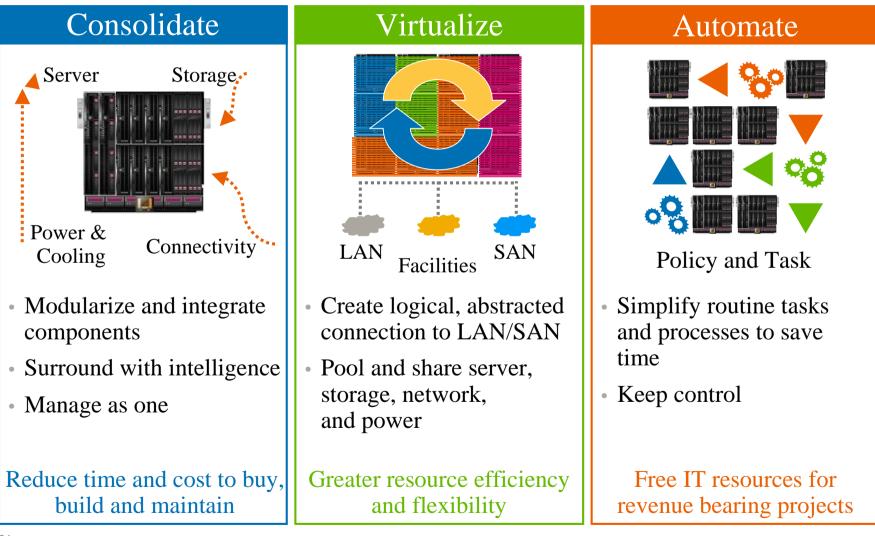

- CPU-integrated Memory Controller
- MillBrook Memory Expanders
- DDR3-RDIMMs

Enabling Technologies

- Power Management
- Intel® Virtualization Technology

Advanced RAS

- New Si reliability features
- New Interconnect Reliability features
- Memory RAS (Sparing, migration...)



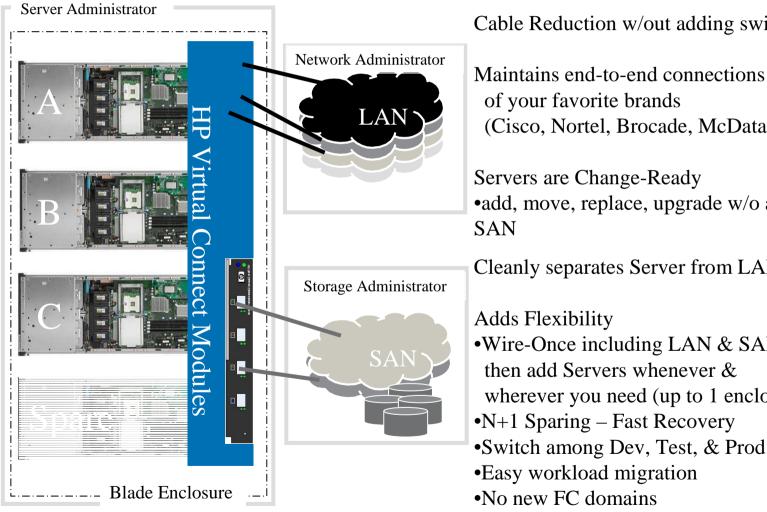
Power & Cooling

- Fully N+N redundant, high-efficiency power supplies, which support:
 - 1200W at 220V or 800W at 110V
 - Brookline (Intelligent PDU) compatible
 - Power Metering
 - Power Cap
 - Power Throttling (Similar to E-Brake)
- Fully redundant system fans, which support:
 - "Data center aware" with rotation speed based on environmental factors including temperature of air inside and outside of chassis
- "Sea of Sensors"
 - Same as ProLiant G6 & G7 products
 - Thermal Sensors on every DIMM, IOH, MillBrook, Processor
 - Inlet and Outlet air temperature
 - Altitude sensor (unique to the rx2800 i2)
- Office Friendly Server option will maintain the acoustics of the current rx2660 Office Friendly option
 - May limit configurations (i.e., fewer DIMMs, processors, cores, etc.)

The HP BladeSystem approach to simplify infrastructure

Greater choice with a robust blade ecosystem

A Full Range of 2P and 4P Blades



Interconnect choices for LAN, SAN, and Scale-Out Clusters

Virtual Connect solves these & makes IT change-ready!

Cable Reduction w/out adding switches

(Cisco, Nortel, Brocade, McData, etc.)

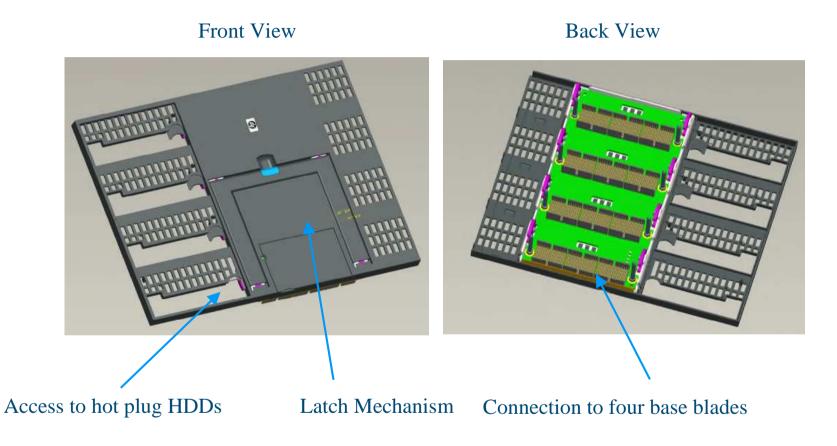
•add, move, replace, upgrade w/o affecting LAN or

Cleanly separates Server from LAN & SAN

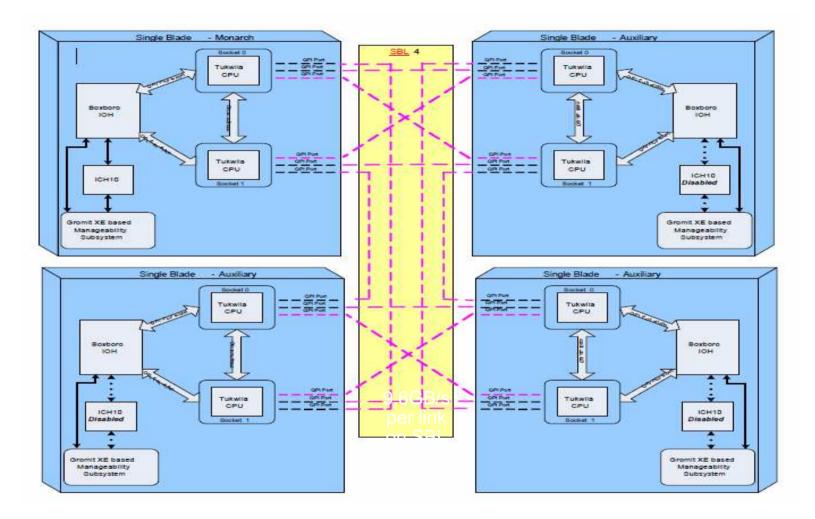
•Wire-Once including LAN & SAN; wherever you need (up to 1 enclosure) •Switch among Dev, Test, & Prod environments Consistency with HP BladeSystem Integrity, ProLiant and StorageWorks

- Server Blade Feature Consistency
 - IO Mezzanine Card Consistency
 - LAN, FC, Flex, IB

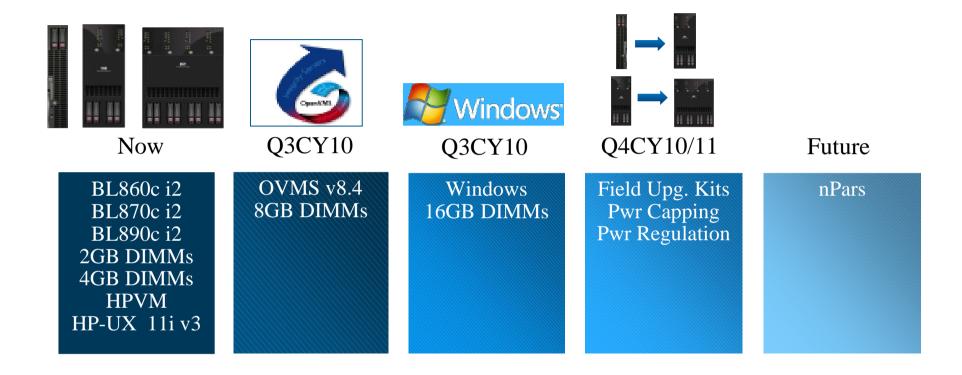
 - Core IO Support SAS, LAN, Serial, USB, VGA
 - Common DDR3 memory DIMM technology
- Side-by-side support of ProLiant, Integrity and StorageWorks in the same c-Class enclosure
- Common Manageability Strategy for hardware manageability including partial support for same tools, UIs, views and processes



Integrity	BL860c i2	BL870c i2	BL890c i2	
Base Server	AD399A for c7000 and c3000	AH383A for c7000 AM329A for c3000	AH384A for c7000 AM330A for c3000	
Processor Sockets	2	4	8	
DIMM Sockets	24	48	96	
HDD Slots	2	4	8	
Emedded Controller	1 HP p410i SAS RAID	2 HP p410i SAS RAID	4 HP p410i SAS RAID	
Embedded NICs	4 10GbE w/Flex-10	8 10GbE w/Flex-10	16 10GbE w/Flex-10	
IO Mezz Slots	3 Gen2 PCIe	6 Gen2 PCIe	12 Gen2 PCIe	
Management	Integrity iLO3 Advanced Pack	Integrity iLO3 Advanced Pack	Integrity iLO3 Advanced Pack	
ICH Module	1	1 in "Monarch Blade"	1 in "Monarch Blade"	
Warranty	3 Yr, Next Day 9x5	3 Yr, Next Day 9x5	3 Yr, Next Day 9x5	


bl890c i2 "Scalable Blade Link" Overview

The bl890 i2 scalable blade link carries coherent CPU traffic (QPI) between all four base blades



Scalable BladeLink Connectivity

Tukwila's directory-based memory coherence architecture and 4 CPU-CPU QPI links per CPU module enable excellent system scaling

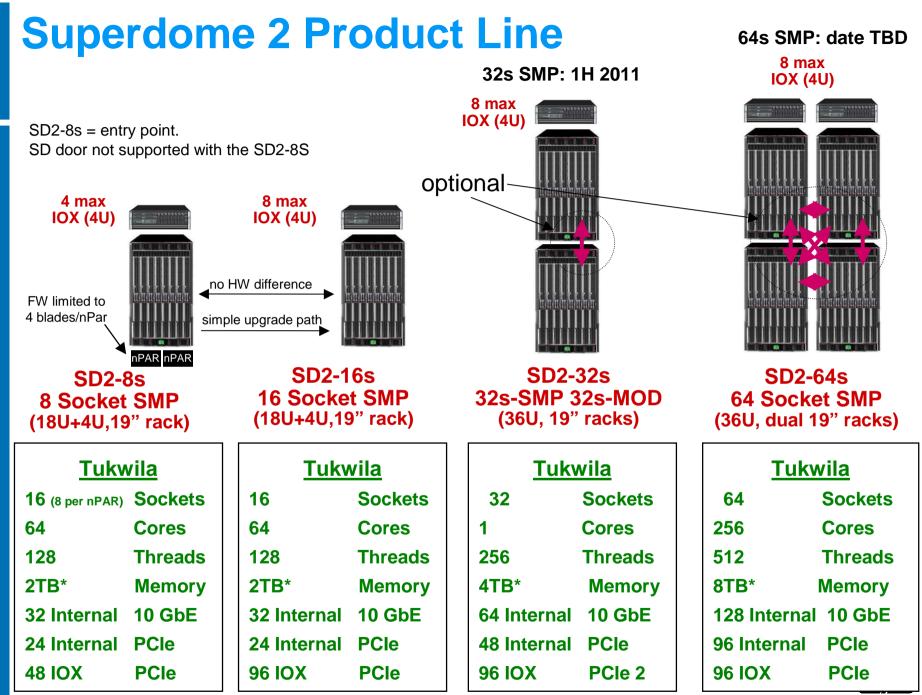
BladeSystem Feature Roadmap

Superdome 2 Taking the Superdome into the Next Decade

- Availability Superdome to the next level
 - Power-on-once architecture
 - Fault Tolerant Xfabric results in > 1000yr MTBF
 - "all hot-swap" design

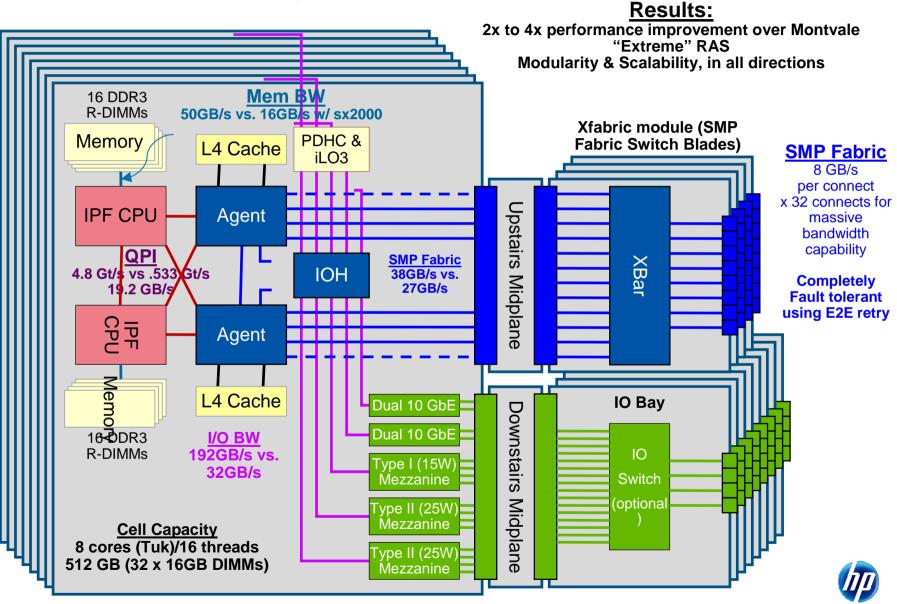
Performance

- 2x to 4x performance in the same footprint
- 55% better price performance per watt
- Designed for Converged Infrastructure
 - "Pay as you grow" mid-range to high-end
 - Modular building blocks


Extending Blades Innovation:

- Superdome 2 Onboard Administrator
- Insight Dynamics VSE & SIM
- Virtual Connect
- Power efficient computing

Building Block Superdome Bladesystem Enclosure "Right Sized" for Mission Critical Environments Additional power supplies and ventilation area "Superdome 2" chassis is very similar to its Slim DVD Drive smaller cousin – the c7000 18U: Perfect! 64c, 2TB (w/ 8Gb DIMMS) The larger size accommodates: Much greater memory capacity stretchec HP sx3000 chipset 2N power for any and all configurations Fits into standard 19" rack Clean "data center in a rack" design Same power supplies (and power inputs) and status display as C7000


April 2009

HP Confidential

* assumes 8GB DIMMS

Superdome 2 Architecture – Overview

Based on the sx3000 chipset from HP

Companiso

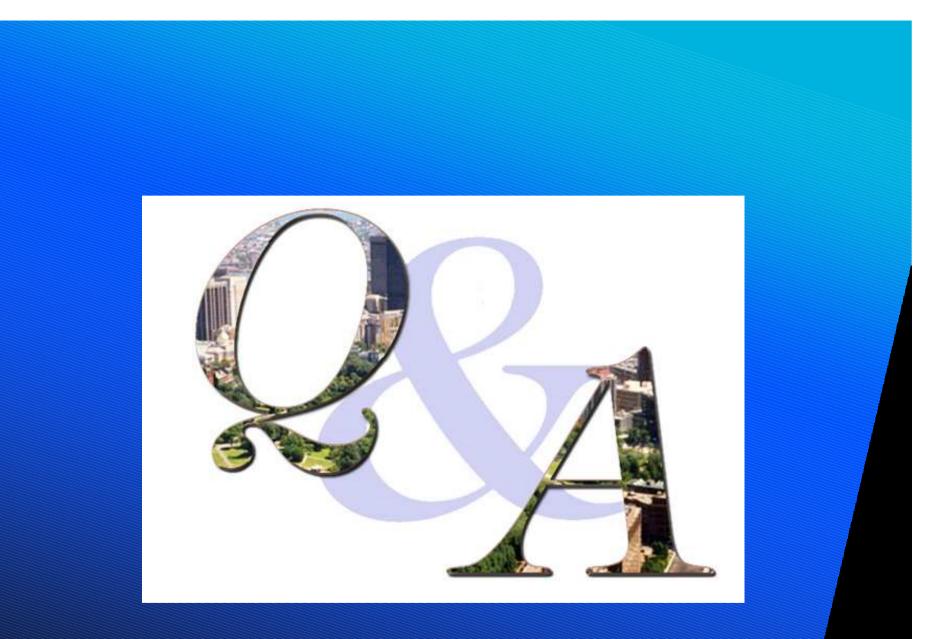
BL890c i2

Key features HP-VM only (nPARs later) 12 I/O slots 96 DIMMs Perf = X Scalable Blade Link Std Rack Door

Key features nPARs, vPARs, HP-VM, iCAP 48 I/O slots (+ Mezz) 128 DIMMs Port = X * (1, 15)

Perf = X * (1.15)

Fault Tolerant XFabric Std Rack Door SD2-16s


Key features nPARs, vPARs, HP-VM, iCAP 96 I/O slots (+ Mezz) 128 DIMMs Perf = X * (1.15) Fault Tolerant Xfabric SD2 Rack Door

Summary

- HP's Converged Infrastructure addresses IT Sprawl
- CI can accelerate the realisation of IT transformation projects
- New Integrity Servers are a core part of HP's CI for mission critical applications
- New Integrity servers build on the benefits of HP's experience of Blades
- Customers benefit from scale up, scale out, mix and match as desired.
- New SD2 platform takes this to next level
- Feature and performance rich today, with more to come.....
- OpenVMS support on Blades in Q3 (8.4 + Patch kit)

Thank You

