
Outline Introduction VMS specialities Examples Conclusion and contact

Perl and OpenVMS

Bernd Ulmann
ulmann@vaxman.de

OpenVMS Fruehjahrstreffen
19-MAR-2009

Bad Homburg

Bernd Ulmann ulmann@vaxman.de

Perl and OpenVMS

Outline Introduction VMS specialities Examples Conclusion and contact

Outline

1 Introduction

2 VMS specialities

3 Examples

4 Conclusion and contact

Bernd Ulmann ulmann@vaxman.de

Perl and OpenVMS

Outline Introduction VMS specialities Examples Conclusion and contact

Overview

Overview

On the following slides I try to give an impression of the power of
Perl in general and in special in an OpenVMS environment.

The examples were chosen from my own daily work on a large
OpenVMS system and range from simple code snippets, programs
for one time usage to larger Perl programs running as batch jobs
and performing crucial tasks like fetching mail from a POP-server
and the like.

Perl is no replacement for DCL but it makes life much more easier
when it comes to file parsing and modifying, socket
communication, data base accesses etc.

Bernd Ulmann ulmann@vaxman.de

Perl and OpenVMS

Outline Introduction VMS specialities Examples Conclusion and contact

Some facts about Perl

Some facts about Perl

The following slides contain some (very) basic facts about Perl
which are in no way complete but may give an impression of the
programming language for those who have never seen any actual
Perl code.

For Perl programmers there exists one main resource of
information and enlightenment – the so called camel book,
”Programming Perl”, published by O’Reilly.

Bernd Ulmann ulmann@vaxman.de

Perl and OpenVMS

Outline Introduction VMS specialities Examples Conclusion and contact

Some facts about Perl

What is Perl?

Perl was developed by Larry Wall.

The name is not an acrynom but a retronym.

Perl is a modern interpreter language (in fact the interpreter
does a good job precompiling the code so Perl programs tend
to run surprisingly fast).

Perl runs on more architectures and operating systems than
most other languages (including Java).

Perl code looks strange for the novice.

Perl is incredibly powerful and concise.

Much of the power of Perl lies in its modules.

Perl’s philosophy is ”There is more than one way to do it.”

Bernd Ulmann ulmann@vaxman.de

Perl and OpenVMS

Outline Introduction VMS specialities Examples Conclusion and contact

Some facts about Perl

Variables

Perl does not care about the type of a variable, it is type free.

Instead, Perl cares about the structure of a variable – in
essence there are three basic structures:

Scalars: A scalar variable can hold a single value at a
time and the variable name is always preceeded
by a $ like in my $pi = 3.14159265;

Arrays: An array is an indexed list consisting of scalars
as its elements. The name of an array is
preceeded by a @ like in my @entries;

Hashes: These are similar to arrays but use strings
instead of numerical indices. Their names are
preceeded by a % like in my %data;

Bernd Ulmann ulmann@vaxman.de

Perl and OpenVMS

Outline Introduction VMS specialities Examples Conclusion and contact

Some facts about Perl

Variables

Some examples of Variables

my $pi = ’three point one four’;

my @array;

$array[0] = ’Something’;

$array[1] = ’Something else’;

my %data;

$data{’name’} = ’Bernd’;

$data{’occupation’}= ’VAX enthusiast’;

Bernd Ulmann ulmann@vaxman.de

Perl and OpenVMS

Outline Introduction VMS specialities Examples Conclusion and contact

Some facts about Perl

Control structures

Perl supports all of the common control structures like if

...else, while, do ...while, for etc. Every such statement
requires a block surrounded by braces – these can not be left out
like in C if only a single statement is to be controlled. In this
special case so called statement modifiers may be used:

Some examples of control structures

if (condition) # traditional if

{
...

}

statement if condition # statement modifier;

Bernd Ulmann ulmann@vaxman.de

Perl and OpenVMS

Outline Introduction VMS specialities Examples Conclusion and contact

Some facts about Perl

Control structures

Some examples of control structures

for (my $i = 0; $i < 10; $i++)

{
print "$i\n";

}

for my $value (@array)

{
print "$value\n";

}

print "$ \n" for (@array);

Bernd Ulmann ulmann@vaxman.de

Perl and OpenVMS

Outline Introduction VMS specialities Examples Conclusion and contact

Some facts about Perl

Regular expressions

Much of Perl’s power stems from its built in regular expression
parser. Regular expressions tend to look a bit like line noise so I
will not give a reasonable example here – you will see some in the
examples below.
(There is quite funny web page comparing programming languages
to religions – according to this source, Perl is Voodoo, my second
programming language, APL, is compared to Scientology – should
I be worried? :-))

Bernd Ulmann ulmann@vaxman.de

Perl and OpenVMS

Outline Introduction VMS specialities Examples Conclusion and contact

Some facts about Perl

Modules

Another source of Perl’s power is the multitude of modules which
are available on CPAN.

Regardless what your initial problem is, first have a look for a
module which might be helpful for your task.

Examples for the power of modules are numerous – in the following
slides a program to fetch mails from a POP3-server is described
which uses a POP3-module for example. This module contains all
necessary functionality to connect to a POP3-server and get mails,
delete mails etc. With the help of the Net::POP3-Module these
tasks reduce to simple calls.

Bernd Ulmann ulmann@vaxman.de

Perl and OpenVMS

Outline Introduction VMS specialities Examples Conclusion and contact

Some facts about Perl

Do/do not

Do: Be open for the Perl way to solve problems.
Expect code that is significantly shorter than
equivalent code in other languages like C etc.
Use statements like split, join, map, grep instead
of unnecessary loops.
Use regular expressions to parse, manipulate or split
strings!
Be strict and use warnings all the time!
Get the Camel Book!

Do not: . . . program in Perl like in C etc.
. . . use arrays when you can use hashes.
. . . loop over an array to find an element!

Bernd Ulmann ulmann@vaxman.de

Perl and OpenVMS

Outline Introduction VMS specialities Examples Conclusion and contact

Some facts about Perl

Resources

The central repository for Perl and the thousands of modules
available is

http://www.cpan.org

This is the Comprehensive Perl Archive Network.

Whenever you need a Perl interpreter, a module or documentation,
have a look at the CPAN web site or search directly via

http://search.cpan.org

Bernd Ulmann ulmann@vaxman.de

Perl and OpenVMS

Outline Introduction VMS specialities Examples Conclusion and contact

Some facts about Perl

Installing Perl

Basically there are two ways to get a Perl interpreter up and
running on a system:

1 You can use a precompiled package – for OpenVMS there is a
HP supplied distribution kit, for other platforms there are
numerous such kits available.

2 Get the sources and compile and install the system yourself.

Personally, I would always prefer the second method since I like to
know what is really running on my system and sometimes I want to
do some things differently compared with a precompiled
installation kit. (Compiling a Perl system on an Alpha is fast, but
on a VAX this can take several hours, be prepared!)

Bernd Ulmann ulmann@vaxman.de

Perl and OpenVMS

Outline Introduction VMS specialities Examples Conclusion and contact

VMS modules

VMS modules

As all of you know, OpenVMS is different from (and superior to :-)
other operating systems which has to be taken into account when
porting or writing software.

There are a lot of modules encapsuling OpenVMS specific tasks
like interfacing the mail system and the like as well as there are
modules which take into account that there is a variety of different
ways to handle file and directory names etc.

In the following a selection of modules which I found to be
especially useful in an OpenVMS environment is listed:

Bernd Ulmann ulmann@vaxman.de

Perl and OpenVMS

Outline Introduction VMS specialities Examples Conclusion and contact

VMS modules

Some useful modules for OpenVMS systems

VMS::Device Interfache to $GETDVI and the like.
VMS::Filespec Converts between OpenVMS and UNIX file specs.
VMS::FlatFile Use hashes to work with index files.
VMS::ICC Intra cluster communication services.
VMS::Mail Interface to the OpenVMS mail system.
VMS::Process Manage OpenVMS processes.
VMS::Queue Work with queues and their entries.
VMS::Stdio File operations like binmode, flush, vmsopen etc.
VMS::System Retrieve system information.
File::Basename System independent operations on filenames etc.

Bernd Ulmann ulmann@vaxman.de

Perl and OpenVMS

Outline Introduction VMS specialities Examples Conclusion and contact

Examples

Examples

The following slides show some practical examples of using Perl in
a productive OpenVMS environment.

Some examples, especially the simpler ones, are accompanied with
their source code which might be interesting, although more
complex examples are only described.

If you are interested in the source code of one of these more
complex examples, please let me know, I will make it available to
you by mail upon request.

Bernd Ulmann ulmann@vaxman.de

Perl and OpenVMS

Outline Introduction VMS specialities Examples Conclusion and contact

Programs for one time usage

Programs for one time usage

Many everyday tasks require that system administrators as well as
programmers perform some unexpected tasks like clever pattern
matching, parsing log files and the like which are not readily solved
with standard DCL tools.

Many of these problems can be solved on the fly using a couple of
lines of Perl code.

The following sections show some typical examples from my own
everyday work using OpenVMS.

Bernd Ulmann ulmann@vaxman.de

Perl and OpenVMS

Outline Introduction VMS specialities Examples Conclusion and contact

Programs for one time usage

Perl as a command line tool

Perl can be used as a command line tool like, for example, awk on
UNIX systems. This can be very useful when you have a puzzling
problem which does not deserve a real program but needs a clever
data conversion on the fly or something like that.

Since there are a variety of command line options for Perl which
are useful in this context, only a simple example is given in the
following. More information about this topic may be found
elsewhere like the Camel book etc.

Bernd Ulmann ulmann@vaxman.de

Perl and OpenVMS

Outline Introduction VMS specialities Examples Conclusion and contact

Programs for one time usage

Changing a configuration file

Once I inherited a configuration file TRANSFER.INI which looked
in parts like this:

[logging]
log = log/transfer.log

ticket = log/ticket.log

[templates]
ticket = templates/ticket.tpl

mail = templates/mail.tpl

Of course these path names are not very OpenVMS like and it
would have been quite cumbersome to edit all of them (there was
a lot of those path names) by hand.

Bernd Ulmann ulmann@vaxman.de

Perl and OpenVMS

Outline Introduction VMS specialities Examples Conclusion and contact

Programs for one time usage

Changing a configuration file

One could write a small Perl program reading the file, performing
the necessary changes using regular expressions and writing the
result back to disk.

Since tasks like these are commonplace, Perl can be used as a
mighty command line tool for performing in place edit operations
like transforming these path names into OpenVMS file names:

In place editing:

perl -i -pe -

"s/^(.*\s*)=(\s*)(.+)\/(.+)/$1=$2\[\.$3\]$4/" -

transfer.ini

Bernd Ulmann ulmann@vaxman.de

Perl and OpenVMS

Outline Introduction VMS specialities Examples Conclusion and contact

Programs for one time usage

Changing a configuration file

Applying this single line statement to the configuration file shown
above, the resulting file looks like this:

[logging]
log = [.log]transfer.log
ticket = [.log]ticket.log

[templates]
ticket = [.templates]ticket.tpl
mail = [.templates]mail.tpl

Bernd Ulmann ulmann@vaxman.de

Perl and OpenVMS

Outline Introduction VMS specialities Examples Conclusion and contact

Programs for one time usage

Repairing HTML files

FAFNER, my beloved VAX-7000/820, serves as a web server for
some of my friends who insist on using ”modern” tools for creating
web and blog pages.
Especially blog programs tend to insert ”ä” instead of ”ä”
which would be correct. This can be corrected on the fly with a
Perl call like this:

Repair HTML files

$ PERL -i -pe "s/\xC3\xA4/\ä/g;
s/\xC3\xB6/\ö\;/g; s/\xC3\xBC/\ü\;/g;
s/\xC3\x84/\Ä\;/g; s/\xC3\x96/\Ö\;/g;
s/\xC3\x9C/\Ü\;/g; s/\xC3\x9F/\ß\;/g;"
[...]*.HTML

Bernd Ulmann ulmann@vaxman.de

Perl and OpenVMS

Outline Introduction VMS specialities Examples Conclusion and contact

Programs for one time usage

Enhancing blog pages

A very special user of FAFNER (my wife :-)) insists of using a
blog program which just refuses to insert a background picture.
Since she really wants to have a background picture, one is
inserted after uploading the HTML pages from her MAC to
FAFNER by executing the following Perl expression:

Inserting a background picture

$ PERL -i -pe "s/id=\""banner\""/id=\""banner\""
style=\""background-image:url\(http:\/\/
ullrykka.dyndns.org\/header bg.jpg\)\""/g"
[...]index.html

Bernd Ulmann ulmann@vaxman.de

Perl and OpenVMS

Outline Introduction VMS specialities Examples Conclusion and contact

Programs for one time usage

Finding unresolved bibliography items

When writing LATEX-documents including a bibliography without
using BibTeX, there is some risk of having uncited bibliography
entries in the source code. A bibliography entry has the form

\bibitem{zachary} %book

G. Pascal Zachary, \emph{Endless Frontier --

Vannevar Bush, Engineer of the American Century},
The MIT Press, 1999

While a citation looks like

cf. \cite{zachary}[p.∼142]

Bernd Ulmann ulmann@vaxman.de

Perl and OpenVMS

Outline Introduction VMS specialities Examples Conclusion and contact

Programs for one time usage

Finding unresolved bibliography items

Having a document of more than 120000 lines resulting in about
600 pages of text with more than 600 bibligraphy entries, I needed
a way to be sure that every entry was in fact cited in the text.

To accomplish this I wrote the following short Perl program which
reads in the complete source code with a single statement and
parses this for all citations in a first run which builds a hash
containing all citations, followed by a second run looking for all
bibliography entries.

Entries without corresponding citation will be printed to stdout (it
turned out that more than 20 entries in the text were unused).

Bernd Ulmann ulmann@vaxman.de

Perl and OpenVMS

Outline Introduction VMS specialities Examples Conclusion and contact

Programs for one time usage

Finding uncited entries in LATEX-source

use strict;

use warnings;

die "Usage bib.pl <filename.tex>\n" unless @ARGV + 0;

my $data;

open my $fh, ’<’, $ARGV[0] or die "Could not open $ARGV[0]: $!\n";
{

local $/;

$data = <$fh>;

}
close $fh;

my %cite;

$cite{$ }++ for $data =∼ m/\\cite\{(.+?)\}/g;

$cite{$ } or print "$ \n" for $data =∼ m/\\bibitem\{(.+?)\}/g;

Bernd Ulmann ulmann@vaxman.de

Perl and OpenVMS

Outline Introduction VMS specialities Examples Conclusion and contact

Programs for one time usage

Parsing a log file

Some weeks ago I had to parse a log file with entries like shown in
the following for some timestamps to calculate an average time
value.

[LOG|SYSTEM|2008 May 13, 14:15:26 (886)|ENGINE.batch]
Loaded 16 events in 497 milliSecs

[END]
[LOG|SYSTEM|2008 May 13, 14:15:55 (281)|Risk|BatchJob]
Time to execute Scenario 24902 ms

[END]
[LOG|SYSTEM|2008 May 13, 14:15:55 (283)|RiskAnalysis|BatchJob]
ScenarioAnalysis Executed [SUCCESS]

[END]
[LOG|SYSTEM|2008 May 13, 14:16:12 (870)|Risk|BatchJobThread]
Time to execute Scenario 13662 ms

[END]

Bernd Ulmann ulmann@vaxman.de

Perl and OpenVMS

Outline Introduction VMS specialities Examples Conclusion and contact

Programs for one time usage

Parsing a log file

Since these logfiles grow quite fast and since it is impossible to
restart logging into a new file when a new round of tests is
performed, the calculation of average times must be possible from
any point in the file on starting with a given date and timestamp.

Using a simple SEARCH is not too easy since log entries are at least
three lines in length and since I am only interested in entries of the
form Time to execute Scenario... after a given timestamp.

All of this called for a short Perl program to parse the file and
compute the desired average execution time value.

Bernd Ulmann ulmann@vaxman.de

Perl and OpenVMS

Outline Introduction VMS specialities Examples Conclusion and contact

Programs for one time usage

Parsing a log file

use strict; use warnings;

die "Usage: stat3 \"yyyy mmm dd\" \"hh:mm:ss\"\n" if @ARGV != 3;

my ($file, $date, $min time) = @ARGV;

my @values;

open my $fh, ’<’, $file or die "Could not open $file: $!\n";
{

local $/ = ’[END]’;

while (my $entry = <$fh>)

{
my ($time, $duration) = $entry =∼
m/^.+\|.+\|$date,\s(\d\d:\d\d:\d\d\s).*execute Scenario\s(\d+)\sms/s;
push(@values, $duration) if $time and $time ge $min time;

}
}
close $fh;

print ’Average: ’, int(eval(join(’+’, @values)) / @values) / 1e3,

’ s (’, @values + 0, ")\n" if @values + 0;

Bernd Ulmann ulmann@vaxman.de

Perl and OpenVMS

Outline Introduction VMS specialities Examples Conclusion and contact

Programs for one time usage

Are there any files with W:WD on my disk?

One day I was asked ”How can you be sure there are no files on
your system disk which are writable by WORLD?”

Good question – this calls for a short Perl program.

Bernd Ulmann ulmann@vaxman.de

Perl and OpenVMS

Outline Introduction VMS specialities Examples Conclusion and contact

Programs for one time usage

Search for files with W:WD

use strict;

use warnings;

my ($fc, $mc) = (0, 0);

for my $line (‘dir/prot/width=(file=60) [...]‘)

{
my ($file, $w) = $line =∼ m/(.+)\s+.+,(.*)\)/;
next unless $file;

$fc++;

print "$file\n" and $mc++ if ($w =∼ m/[WD]/);

}

print "$fc files processed, $mc are world

writable/deletable!\n";

Bernd Ulmann ulmann@vaxman.de

Perl and OpenVMS

Outline Introduction VMS specialities Examples Conclusion and contact

Programs for one time usage

Migrating a MySQL database to RDB

On one occasion I had to migrate quite a lot of data from a
MySQL database running on a LINUX system to an RDB database
running on an OpenVMS system.

The first idea was to write a database dump from the MySQL
system, reformat this using Perl into something which could be
understood by RDB and feed the resulting data into the RDB
system.

This turned out to be too cumbersome, so another approach was
taken: Write a short Perl program connecting to both databases
and copying data on the fly from one system to the other.

Bernd Ulmann ulmann@vaxman.de

Perl and OpenVMS

Outline Introduction VMS specialities Examples Conclusion and contact

Programs for one time usage

Migrating a MySQL database to RDB (initialization)

use strict;

use warnings;

no warnings qw /uninitialized/;

use Net::MySQL;

use DBI;

use DBD::RDB;

my $rdb = DBI -> connect (

’dbi:RDB: ATTACH ALIAS RECIPES FILENAME

DISK$RDB DATA:[000000]RECIPES’, undef, undef,

RaiseError => 1, PrintError => 1, AutoCommit => 0, ChopBlanks => 1);

my @tables = qw/art eigenschaften einheiten glutenfrei kategorien

personen region rezept kategorien rezept zutaten recipes zustand

zutaten/;

my $mysql = Net::MySQL -> new (hostname => ’klapauzius.pi-research.de’,

database => ’recipes’, user => ’rikka’,

password => ’:-)’);

Bernd Ulmann ulmann@vaxman.de

Perl and OpenVMS

Outline Introduction VMS specialities Examples Conclusion and contact

Programs for one time usage

Migrating a MySQL database to RDB (copying data)

for my $table (@tables)

{
$rdb -> do ("delete from recipes.$table");

$mysql -> query ("select * from $table");

my $record set = $mysql -> create record iterator;

my @fields = $record set -> get field names;

my $statement = "insert into recipes.$table (" .

join (’,’, @fields) . ’) values (’ .

join (’,’, map {’?’} 0..$#fields) . ’)’;

my $rdb sth = $rdb -> prepare($statement);

my $counter = 0;

while (my $record = $record set -> each)

{
$rdb sth -> execute(@$record);

$rdb -> commit unless $counter % 50;

}
$rdb -> commit if $counter % 50;

print "\nInserted $counter lines into recipes.$table\n";
}
$rdb -> disconnect;

Bernd Ulmann ulmann@vaxman.de

Perl and OpenVMS

Outline Introduction VMS specialities Examples Conclusion and contact

Larger programs

Larger programs

Many problems which occur on a regular basis can be solved using
Perl, too. Examples for such problems are:

Generating simple web server statistics on a daily basis.

Read stock prices from Yahoo and persist them in MySQL.

Fetching mail from a POP server in regular time intervals and
distributing these mails to the OpenVMS mail system.

Sending outgoing mails to an SMTP server requiring
authentication which is not currently supported by OpenVMS.

Caching results from database queries to speed up execution
time of programs requesting data from the database.

These examples will be briefly described in the following.

Bernd Ulmann ulmann@vaxman.de

Perl and OpenVMS

Outline Introduction VMS specialities Examples Conclusion and contact

Larger programs

Simple web server statistics

After observing that the webserver running on my OpenVMS
system is rather busy serving requests I wanted to have a simple
web server statistics to know which files are requested how often
from remote users. All in all I wanted to generate a log file like this
every night in a small batch job:

2734: my machines/dornier/do80/

288: my machines/bbc/tisch analogrechner/

117: publications/anhyb.pdf

97: publications/handson.pdf

88: my machines/eai/understanding/underst analog hybrid comp.m4a

83: analog computing/vehicle simulation/weak damping.avi

72: my machines/dornier/do80/do80 bedienungshandbuch.pdf

Bernd Ulmann ulmann@vaxman.de

Perl and OpenVMS

Outline Introduction VMS specialities Examples Conclusion and contact

Larger programs

Simple web server statistics

use strict; use warnings;

die "File name and account name expected!\n" unless @ARGV == 2;

my ($log file, $account) = @ARGV;

open my $fh, ’<’, $log file or

die "Unable to open log file $log file, $!\n";
my %matches;

while (my $line = <$fh>)

{
my ($ip, $key) = $line =∼
m:^(\d+\.\d+\.\d+\.\d+).*"GET /$account/(.+?)\s:;

next if !$ip or $ip eq ’^192.168.31’;

$key =∼ s/"//g;

$key .= ’index.html’ if $key =∼ m:/$:;

$matches$key++ if $key =∼ m/(html|pdf|txt)$/;

}
close $fh;

printf "%5d: %s\n", $matches{$ }, $

for (sort $matches$b <=> $matches$a keys(%matches));

Bernd Ulmann ulmann@vaxman.de

Perl and OpenVMS

Outline Introduction VMS specialities Examples Conclusion and contact

Larger programs

Simple web server statistics

A couple of months ago my friend Michael Monscheuer wrote a
rather equivalent web server statistics script in pure DCL – all in
all his solution took 85 lines of DCL!
I have to admit that the DCL solution seems more easy to read on
first sight, but as soon as you got used to the Perl idioms you can
take advantage of Perl’s brevity – in many cases all code you need
to see in order to understand a program fits on a single screen.

Bernd Ulmann ulmann@vaxman.de

Perl and OpenVMS

Outline Introduction VMS specialities Examples Conclusion and contact

Larger programs

Fetching stock data from Yahoo

Some time ago friend of mine started a project to analyze the
validity of stock indicators (candle stick indicators as well as
simpler ones). Therefore he needed lots of real stock data in a
database – a natural choice was MySQL on VMS with a small Perl
program to fetch data in regular time intervals from a public
provider like Yahoo.
The central mode which was used to get the stock data is
LWP::UserAgent – this makes fetching a complete web pages as
simple as this (we collected data for about 250 stocks during one
and a half years using this technique):

Bernd Ulmann ulmann@vaxman.de

Perl and OpenVMS

Outline Introduction VMS specialities Examples Conclusion and contact

Larger programs

Fetching stock data from Yahoo

LWP::UserAgent usage

use LWP::UserAgent;

...

my $agent = new LWP::UserAgent;

$agent->$agent(’Mozilla/6.0’);

$agent->max size(100000);

$agent->timeout(30);

...

my $request = new HTTP:Request GET => $url;

my $result = $agent->request($request);

By the way – the indicators turned out to be useless (as expected –
predicting the future is harder than employing simple indicators).

Bernd Ulmann ulmann@vaxman.de

Perl and OpenVMS

Outline Introduction VMS specialities Examples Conclusion and contact

Larger programs

Fetching mail from a POP-server

Sometimes it is desirable to fetch mails from a typical POP3-server
and make these available in the OpenVMS mail system so the
system users can access their mails using MAIL or a suitable web
interface like yahmail or soymail etc.

To make this possible, a Perl written batch job is required which
polls in regular intervals a variety of POP3-servers and mailboxes,
fetches mails and distributes these mails to the various users of the
OpenVMS system.

Bernd Ulmann ulmann@vaxman.de

Perl and OpenVMS

Outline Introduction VMS specialities Examples Conclusion and contact

Larger programs

Fetching mail from a POP-server

Using the following modules, the overall Perl code for
implementing this batch job consists of only 140 lines:

Net::POP3; Client interface to the POP3-protocol.
IO::File; File creation and access methods.
POSIX qw(tmpnam); Used for creating temporary file names.
VMS::Mail; Interface to the OpenVMS mail system.

When it is possible to receive mails, it would be nice to be able to
send mails, too, as the following slides show.

Bernd Ulmann ulmann@vaxman.de

Perl and OpenVMS

Outline Introduction VMS specialities Examples Conclusion and contact

Larger programs

SMTP-proxy

Almost every current mail provider requires its clients to
authenticate prior to sending mail via their SMTP server(s).

Unfortunately authentication is not supported by the TCPIP
package for OpenVMS. Since I had the requirement to send
outgoing mail directly, i.e. without an intermediate system, it was
decided to implement a small SMTP-proxy running on the
OpenVMS system.

This proxy connects on the local machine to port 25 and listens for
outgoing mail. Another connection is made to port 25 of the
provider.

Bernd Ulmann ulmann@vaxman.de

Perl and OpenVMS

Outline Introduction VMS specialities Examples Conclusion and contact

Larger programs

SMTP-proxy

Every outgoing mail is parsed and enriched with the necessary
authentication information before being sent to the provider which
solved the problem quite easily.

The SMTP proxy makes use of the following modules which results
in an overall code size of only 68 lines of Perl:

Net::ProxyMod; This module allows easy packet modification.
MIME::Base64; MIME-encoding and -decoding
Tie::RefHash; Allows using references as hash keys.

Bernd Ulmann ulmann@vaxman.de

Perl and OpenVMS

Outline Introduction VMS specialities Examples Conclusion and contact

Larger programs

A database proxy

Sometimes it is desirable to perform database accesses not directly
but via a proxy which might either contain some business logic
and/or cache as much data as possible to reduce database load at
the cost of some additional memory consumption.

In 2005 the problem arose that accesses to an RDB database
running on a VAX were too slow and did not match expectations.

Since all of these accesses were reads containing several joins and
the like, the idea of implementing a proxy server in Perl to cache
the results yielded by such accesses and deliver the cached results
for all following accesses instead of querying the database came up.

Bernd Ulmann ulmann@vaxman.de

Perl and OpenVMS

Outline Introduction VMS specialities Examples Conclusion and contact

Larger programs

A database proxy

(serializing and caching)

@
@

@
@

@

�
�

�
�

Client 1 Client 2 Client n

Database

Proxy

�
�

�

Bernd Ulmann ulmann@vaxman.de

Perl and OpenVMS

Outline Introduction VMS specialities Examples Conclusion and contact

Larger programs

A database proxy

The speedup effect which can be obtained using this Perl written
data base proxy is dramatic:

A typical request which takes 3.2 seconds when issued directly to
the database is satisfied in 3.52 seconds using the proxy with
empty cache (i.e. directly after startup).

The very same request issued to the proxy which already has the
required data in its cache takes only 0.34 seconds and is thus
roughly ten times faster than the direct database access.

Of course tuning the proxy with respect to its cache size and cache
lifetime depends on the type of workload.

Bernd Ulmann ulmann@vaxman.de

Perl and OpenVMS

Outline Introduction VMS specialities Examples Conclusion and contact

Conclusion

Conclusion

Perl turns out to be an invaluable tool for everyday usage as
well as for large and complex production programs.

Especially in an OpenVMS environment which often has
special needs when it comes to system connectivity and the
like, Perl can be employed with much benefit.

Perl does not consume too many resources and is really fast
for an interpretive language, so it can be even used on smaller
VAX systems.

It is important to realize that Perl is not a scripting language

but rather a very mighty programming language. Thus Perl
should be taken seriously.

Bernd Ulmann ulmann@vaxman.de

Perl and OpenVMS

Outline Introduction VMS specialities Examples Conclusion and contact

Contact

Contact

The author can be reached at

ulmann@vaxman.de

Bernd Ulmann ulmann@vaxman.de

Perl and OpenVMS

	Outline
	Introduction
	VMS specialities
	Examples
	Conclusion and contact

